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Exercice 1 (Questions de cours)

1. Soient E un k-espace vectoriel de dimension finie n et (@1,..., @p) une famille de
formes linéaires sur E avec p < n. Donner une minoration de

dim (ﬁ Ker(g;) > - F éﬂ/ 'F <—:—“>
i=1
2. Donner la définition d’un endomorphlsme cychque (en dlmensmn finie).
\/CJ’C&}‘(%)/ fc>/0> =B -

et discuter le cas d’égalité.

Exercice 2

On se donne xy < X7 < -+ < Xn des nombres réels deux-a-deux distincts et on
considére le R-espace vectoriel E := Ry, 1[X]. On définit également les formes linéaires
@io: E—= Ret @i7: E— R données par

9io(P) =P(xi) et @i1(P)=P'(xq).

1. Montrer que la famille (@i, @i1)i-; est une base de I'espace E*.

2. Calculer la base pré-duale de la famille (@jp, @1,1)i;. Pour cela, on pourra chercher
les polyndémes en question sous la forme P = (aX 4 b)Liz avec

séme

le 1°™€ polynome d’interpolation de Lagrange.



Exercice 3

Soient E un k-espace vectoriel et F C E un sous-espace de E. On notera mr: E — E/F
la surjection canonique vers le quotient.

1. Si G est un sous-espace de E, montrer que 7t¢(G) est un sous-espace de E/F et qu’il
est naturellement isomorphe & G/(FN G).

2. Montrer que 7tr(F + G) = 7¢(G) et en conclure qu’il existe un isomorphisme naturel
7 (G) = (F+ G)/F.

3. Vérifier que si H C E/F est un sous-espace vectoriel, alors 7'[{1 (H) est un sous-espace
de E et que de plus F C TIF_] (H).

4. En déduire que les ensembles suivants sont en bijection :

{G C E| G sous-espace de E avec FC G C E} et {H C E/F|H sous-espace de E/F}.
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