
Licence de Mathématiques — 3ème année 2025–2026

Algèbre linéaire et bilinéaire

Contrôle Continu n° 2 (1h)

Barème indicatif : 2/7/6/5.
Exercice 1 (Question de cours)

Soient E un k-espace vectoriel (avec k de caractéristique ̸= 2) et q : E→ k une forme
quadratique.

Donner la définition du noyau de q (noté N(q)) et celle du cône isotrope C(q). Préciser
l’inclusion qui est toujours vraie et donner un exemple où cette inclusion est stricte.

Correction : cf. cours. Pour l’exemple, on peut prendre le plan hyperbolique q(x1, x2) =
2x1x2 sur k2 avec N(q) = 0 mais C(q) = {x1 = 0} ∪ {x2 = 0}.
Exercice 2

Soit E un espace vectoriel de dimension finie sur un corps k et u ∈ End(E) un
endomorphisme.
1. Rappeler la caractérisation du caractère cyclique de u en termes de µu son polynôme
minimal.

On considère à partir de maintenant F et G ⊂ E deux sous-espaces u-stables de E tels
que E = F⊕G. On note v = u|F et w = u|G les restrictions de u à F et G.
2. Calculer µu en fonction de µv et µw.
3. Montrer que si v et w sont cycliques avec µv et µw premiers entre eux, alors u l’est
aussi.
4. Réciproquement, montrer 1 que si u est cyclique alors v et w le sont et µv et µv et µw
sont premiers entre eux. On pourra raisonner sur les degrés des polynômes µu, µv et µw.

Correction :
1. u est cyclique si et seulement si µ = χu si et seulement si deg(µu) = dim(E).
2. µu = ppcm(µv, µw). En effet, µu annule v et w donc il est multiple de µv et de µw

et donc multiple de ppcm(µv, µw). Réciproquement, en raisonnant par blocs, on
constate que ppcm(µv, µw) annule µu donc cela donne l’autre relation de divisibilité.

3. Dans ce cas, on a µu = ppcm(µv, µw) = µvµw et donc

deg(µu) = deg(µv) + deg(µw) = dim(F) + dim(G) = dim(E)

car v et w sont cycliques. D’après la question 1, on en déduit que u est cyclique.

1. sans vous référer à l’exercice de TD où cette question a été traitée !
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4. Si u est cyclique, on a :

dim(E) = deg(µu) = deg(ppcm(µv, µw)) ≤ deg(µvµw) = deg(µv) + deg(µw)
≤ dim(F) + dim(G) = dim(E)

car ppcm(µv, µw) divise µvµw. On en déduit donc que les inégalités sont des égalités
et finalement : deg(µv) = dim(F), deg(µw) = dim(G) et ppcm(µv, µw) = µvµw.

Exercice 3
Pour un entier d ≥ 1 et λ ∈ C, on note

Jd(λ) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ 1 0 · · · 0

0
. . . . . . . . . ...

... . . . . . . . . . 0

... . . . . . . 1

0 · · · · · · 0 λ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
le bloc de Jordan de taille d associé à la valeur propre λ.
1. Calculer le polynôme minimal et le rang de Jd(λ) en fonction de d et λ.
2. En déduire que

∀A ∈ Mn(C), deg(µA) ≤ rg(A) + 1

3. Décrire le cas d’égalité en donnant la décomposition de Jordan d’une matrice A qui
vérifie deg(µA) = rg(A) + 1.

Correction :
1. Le polynôme minimal est

µJd(λ) = (X− λ)d

et on a
rg (Jd(λ)) =

{
d− 1 si λ = 0,
d si λ ̸= 0.

2. Si le polynôme minimal de A est

µA =
r∏
i=1

(X− λi)
di

on sait que, dans la décomposition de Jordan, les blocs de Jordan associés à la
valeur propre λi auront une taille inférieure à di. Pour chaque bloc, on a l’inégalité
attendue et, les blocs étant indépendants entre eux, les rangs s’ajoutent pour donner
le rang de A (écrivez la matrice et vous verrez que c’est très clair !).

3. Si A vérifie deg(µA) = rg(A) + 1, alors rg(A) = deg(µA) − 1 < n et donc 0 est
valeur propre de A.
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— Si 0 est l’unique valeur propre de A, A est nilpotente µA = Xd. On sait qu’il y
a un bloc de Jordan Jd(0). Si A admet un autre bloc de Jordan Jm(0) avec
1 < m ≤ d, alors

rg(A) + 1 ≥ rg(Jd(0)) + rg(Jm(0)) + 1 = d+m− 1 > d = deg(A).

On en déduit que dans le cas nilpotent A n’a qu’un seul bloc de Jordan de
taille d et éventuellement des blocs de Jordan de taille 1 :

A ∼

⎛⎜⎜⎜⎜⎜⎝
Jd(0) 0 · · · 0

0 J1(0)
. . . ...

... . . . . . . ...
0 · · · 0 J1(0)

⎞⎟⎟⎟⎟⎟⎠ .

— Si la matrice A a une valeur propre non nulle λ, le même raisonnement que
ci-dessus montre qu’il n’y a qu’un seul bloc de Jordan pour λ (sinon de nouveau
le rang serait trop élevé par rapport à l’exposant de (X− λ) dans µA). Ceci
étant vérifié pour toutes les valeurs propres non nulles de A, on en déduit
que la forme de Jordan de A est : pour chaque valeur propre λi (1 ≤ i ≤ r)
non nul, un unique bloc de Jordan Jdi(λi), éventuellement un bloc Jd(0) (avec
d ≥ 2) et des blocs J1(0). Pour une telle matrice, on a bien :

µA = Xd
r∏
i=1

(X− λi)
di de degré deg(µA) = d+

r∑
i=1

di

et son rang vaut

rg(A) = d− 1+
r∑
i=1

di.

Exercice 4
On considère la matrice

A :=

⎛⎜⎜⎜⎜⎜⎝
2 −4 −3 0 2

1 −2 −2 0 1

0 0 0 0 0

1 −2 −3 0 1

0 0 −1 0 0

⎞⎟⎟⎟⎟⎟⎠ ∈ M5(R).

1. Calculer rg(A).
2. En remarquant que A2 = 0, donner la décomposition de Jordan de A.
3. Donner une base de R5 dans laquelle A est sous forme de Jordan.

Correction :
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1. On a C2 = 2C1, C5 = C1 donc Im(A) = Vect(C1, C3) et rg(A) = 2.
2. Comme A ̸= 0 et A2 = 0, on sait que la décomposition de Jordan de A fait

apparaître au moins un bloc de taille 2. Un bloc J2(0) est de rang 1 donc il y en
a 2 et on a nécessairement

A ∼

⎛⎜⎝J2(0) 0 0

0 J2(0) 0

0 0 J1(0)

⎞⎟⎠
3. On remarque que A(e1) = C1 et A(e3) = C3 sont linéairement indépendants et

comme visiblement e4 ∈ Ker(A), on peut choisir la base

B = (A(e1), e1, A(e3), e3, e4)

qui met A sous forme de Jordan.
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