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Algebre linéaire et bilinéaire
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Un bareme est mentionné & titre indicatif pour chaque exercice. Il n’a bien siir aucune
valeur contractuelle.

Exercice 1 — Baréme indicatif : 5 points (2/1/1/1)

Soit E un espace vectoriel de dimension finie n sur un corps K. On se donne u € End(E)
un endomorphisme et F C E un sous-espace u stable de E. On notera 7y: E — E/F la
projection canonique de E vers le quotient E/F et up € End(F) I'endomorphisme de F
induit par u.

1. Rappeler de quelle fagon u induit un endomorphisme de E/F que nous noterons
U € End(E/F). Montrer que les polyndmes caractéristiques vérifient la relation :

Xu = XurXu-

Comme F est u-stable, on a w(F) C F et 'application rtrou: E — F vérifie rtrou(F) = {0}.
Par propriété universelle du quotient, on en déduit qu’il existe w: E/F — E/F tel que
7IF © W = U O TTf.

Si on choisit G un supplémentaire de F dans E, la projection 7tr restreinte a G réalise
un isomorphisme entre G et E/F. Si z € E/F, il existe donc un unique x € G tel que
z = mr(x) et on a U(z) = mr(u(x)). Cela signifie que si B = BrUBg est une base adapatée
a la décomposition E = F & G, on a une décomposition par bloc

_ Matg, *
Mat (1) = ( 0 MatBG(u)> :

Ci-dessus, la notation Bg désigne la base de E/F induite par celle de G. Avec cette
décomposition par blocs, il est évident que les polyndémes caractéristiques vérifient

Xu = XupXu-

2. Montrer que si x € E, les sous-espaces cycliques satisfont a 1’égalité :

e (K[u] - x) = K] - 7 (x).



La notation K[u] - x désigne le sous-espace cyclique engendré par x :
Kl - x == {P(w)(x) | P € K[X]} = Vect (uj(x),j > o) CE.
Siy =w(x) (pour j > 0), alors on a
me(y) = oW (x) = Wompow | (x) = -+ =T (mr(x).
Par linéarité, on a alors
VP € KIX], mr(P(u)(x)) = P(w) (mr(x))

ce qui est exactement la relation cherchée.
3. En déduire que si u est cyclique, alors u ’est également.

Si u est cyclique, il existe x € E tel que K[u] - x = E et, pour ce vecteur, on en déduit
donc
K[l - me(x) = e (Kfu] - x) = 7e(E) = F

car I'application quotient est surjective. Ceci signifie bien que U est cyclique pour le
vecteur 7t (x).

4. Donner un exemple de situation ou ur et U sont cycliques alors que u ne 'est pas.

Si on se place sur E = K? et F = Key, 'application u = Idg n’est pas cyclique mais
elle le devient sur E/F ~ K.

Exercice 2 — Baréme indicatif : 5 points (1/1/1/1/1)

Soit (E, (-, -)) un espace hermitien. Soit u € End(E) un endomorphisme. On rappelle
que u est dit hermitien si u* = u et anti-hermitien si u* = —u.

1. On suppose que u est hermitien. Démontrer que (x,y), = (u(x),y) est une forme
hermitienne sur E. A quelle condition (portant sur u) cette forme est-elle un produit
scalaire hermitien sur E 7

La condition de sesquilinéarité est bien évidemment satisfaite et la symétrie hermitien
provient du caractére hermitien de u. En effet, six et y € E, on a :

(% Y = (ulx),y) = (5, u"(y)) = (xuly)) = (uly),x) = (Y, x),,.
Cette forme hermitienne est un produit scalaire si et seulement u est défini positif.

2. On suppose que u est anti-hermitien.



2.1 Justifier qu’il existe une base orthonormée de E formée de vecteurs propres de u et
que les valeurs propres de u sont imaginaires pures.

Un endomorphisme anti-hermitien est en particulier normal donc il est diagonalisable
en base orthonormée. De plus, si A € Sp(u), alors

)\<X) X> = <LL(X),X> = <Xa U.*(X)> = <X, *LL(X)) = <X> *)\X) = *X<X> X>
et donc A = —A et A est imaginaire pure.

2.2 Démontrer que |det(Idg +u)| > 1.

Avec ci-dessus, on a

det(Ide +u) = [ JO1 + i)
k=1

avec Ay = il les valeurs propres de u. On en déduit immédiatement la minoration
annonceée.

Soit n > 1. On considére E = C" que 'on munit du produit scalaire hermitien
canonique : (X,Y) = *XY. Soit M € M, (C). On suppose que la matrice H = %(M + M*)
est hermitienne définie positive.

3. Démontrer que H € GL,(C).

Une matrice hermitienne définie positive est en particulier de rang maximal donc
inversible.

4. On consideére (-, )1y le produit scalaire hermitien associé & H comme & la question 1.
Soit B = %(M — M*). Démontrer que I'endomorphisme

u.E—>E
M1 X — HBX

est un endomorphisme anti-hermitien de ’espace hermitien (E, (-, )p).
On calcule pour X, Y € C" :
(um(X), V)i = (H ),Y) = (HH'BX,Y)
(BX Y> <>< —BY) = —(H "HX, BY)
—(HX, H'BY) = —(X, um(Y))n
et donc up; est bien anti-hermitien pour le produit scalaire considéré. Si dessus, on a
utélisé le fait que B est anti-hermitienne (4™ égalité) et que H™' est elle hermitienne
(6°me égalité).
5. Déduire de ce qui précede que det H < |det M.
D’apres la question 2.2, on a |det(Idg +upm)| > 1 et donc :

|det(H + B)|  [det(M)
det(H)  det(H)

1 <|det(Idg +um)| = |det(In + H™ B)



ce qui est bien I'inégalité annoncée.

Exercice 3 — Baréme indicatif : 10 points (4/4/2)

Soit E un R-espace vectoriel de dimension n > 1. Soit q et q deux formes quadratiques
non dégénérées sur E, dont on note b et b’ les formes polaires.

1. On rappelle que le cone isotrope de la forme q est

1.1

1.2

1.3

1.4

C(q) ={x € E|q(x) =0}.

Montrer que €(q) est soit un point, soit une réunion de droites vectorielles. Donner
des exemples de formes quadratiques q; et g, telles que C(q7) (resp. €(qz2)) est une
réunion finie (resp. infinie) de droites.

Si x € C(q) et A € R, alors q(Ax) = A?q(x) = 0 et donc C(q) est stable par
homothétie : c¢’est donc soit le singleton {0} soit une réunion de droites. Sur R?,
la forme q1(x) = x% — X% est non dégénérée et son cone isotrope est la réunion de
2 droites ({(x1,xz) eR?|x; = ﬁ:xz}). Sur R3, la forme qa(x) = x%+x%—x§ est non
dégénérée et son cone isotrope est une surface qui est une réunion d’une infinité de
droites.

Montrer que si g et q’ sont proportionnelles (c’est-a-dire s’il existe A € R* tel que
q’ =Aq), alors €(q) = C(q’).

C’est évident.

Montrer que si C(q) = {0}, alors q est de signature (n,0) ou (0,n).

Si la signature de q est de la forme s,n —s avec 0 < s < m, on sait alors que 'on

peut trouver une base (ej,...,en) de R™ orthogonale pour q avec q(ex) = 1 pour
k=1,...s et q(ej) = —1 pour j > s. Le vecteur (non nul) x = ej — €541 est alors
isotrope.

En déduire que, en général, I’égalité C(q) = C(q’) n’implique pas que q et q’ sont
proportionnelles. Les deux formes quadratiques q;(x) = x% + x% et qa2(x) = X% + ZX%

sont définies positives sur R? (donc anisotropes) et elles ne sont évidemment pas
proportionnelles.

Nous allons montrer que, en dehors de 'obstruction soulevée a la question 1.4, la
réciproque de la question 1.2 est vraie. On suppose donc & partir de cette question que

€(q) =C(q") # {0},

et notre objectif est de montrer que q et q’ sont proportionnelles.

2. Soit y un vecteur isotrope non nul pour q et q’.



2.1

2.2

2.3

24

On note Hy (resp. H{J) le sous-espace orthogonal a Vect(y) par rapport a la forme
bilinéaire b (resp. b’). Pourquoi ces sous-espaces sont-ils des hyperplans de E ?

Hy ={x € E|b(y,x) = 0} = ker b(y, -). Or comme q est non dégénérée, I'application
linéaire
@¢qg : E — E*
y — bly,)

est un isomorphisme, donc b(y, -) est une forme linéaire non nulle des lors que y
est non nul. Son noyau est alors un hyperplan de E. C’est exactement le méme
argument pour Hy.

Soit x € E. On définit Dyy = {x + ay, a € R}. Calculer q(x + ay) et en déduire
que si x € Hy, alors
Dyysix e
D, Nne(q) =4 " (q)
0 six¢C(q).

Pour tout « € R, on a
q(x+ ay) =b(x + ay,x + ay) = q(x) + 2ab(x,y) + oczq(y),

en utilisant la bilinéarité et la symétrie de la forme b. Puisque y est un vecteur
isotrope, on a q(y) =0, et donc q(x + ay) = q(x) + 2acb(x,y). Si de plus x € Hy,
alors le terme b(x,y) est aussi nul, et donc q(x + ay) = q(x). On en déduit que si
x € €(q) alors pour tout z € Dy, on a q(z) =0, c’est-a-dire Dy, C C(q), ce qui
donne la premiere alternative. Si par contre q(x) # 0, alors pour tout z € Dy, on
a q(z) # 0, ce qui montre que Dy y N €(q) = 0.

Montrer que si x ¢ Hy alors Dy y N C(q) est réduit & un point que 'on précisera.

Six ¢ Hy alors q(x + ay) = q(x) +2ab(x,y) avec b(x,y) # 0. Donc q(x+ay) =0
pour un unique « (qui est —q(x)/2b(x,y)). Ainsi,

Dx,y N e(q) = {X_ qu(()?)y)y} .

Déduire des questions 2.2 et 2.3 que considérer le cardinal de Dy y N C(q) suffit a
distinguer les vecteurs x qui appartiennent a Hy de ceux qui n’y appartiennent pas.
En déduire que Hy = Hy.

D’apres 2.2 et 2.3, on a x € Hy si et seulement si Dyy N €C(q) est infini (en fait :
une droite affine) ou I'ensemble vide. Comme C(q) = €(q’) par hypothese, ceci
est équivalent & demander a ce que Dyy N €(q’) soit infini ou I'ensemble vide,
c’est-a-dire & ce que x appartienne & H/ (car les résultats de 2.2 et 2.3 s’applique
tout aussi bien & q’).



3. On note toujours y un vecteur isotrope pour q et q’ comme au début de la question 2.

3.1 Montrer qu’il existe Ay € R* tel que b’(y,-) =Ayb(y,-).

On utilise le résultat du cours qui dit que deux formes linéaires (ici b(y, -) et b’(y,-))
ont le méme noyau si et seulement si elles sont colinéaires.

3.2 Montrer que pour tout x ¢ Hy, q’(x) = Ayq(x) (penser & la question 2.3).

Si x ¢ Hy, alors les singletons Dy N €(q) et Dyy N €(q’) sont égaux, et donc

qx) q'(x)

Ty 2(ny)Y
d’ott

qx) _ d'x) _ 9'(x)

b(x,y) b(x,y) Ayb(x,y)

d’apres 3.1. En simplifiant par b(x,y), on en déduit le résultat voulu.

3.3 Montrer que le complémentaire de Hy dans E est une partie dense dans E et
conclure.

Soit x € E\ Hy. Si w € Hy, alors pour tout ¢ > 0, b(y,w + ex) = eb(y,x) # 0, et
donc w + ex € Hy. Comme w + ex tend vers w lorsque ¢ tend vers 0, on a bien
montré la densité de E \ Hy dans E.

Pour conclure, il suffit de dire que q’ et Ayq coincident sur cette partie dense
d’apres 3.2, et qu’elles sont continues (par exemple parce qu'une fois que l'on a
fixé une base de E, leur écriture en coordonnées est polynomiale).



