
Licence de Mathématiques — 3ème année 2025–2026

Algèbre linéaire et bilinéaire

Contrôle Continu n° 3 (1h30)

Un barème est mentionné à titre indicatif pour chaque exercice. Il n’a bien sûr aucune
valeur contractuelle.

Exercice 1 — Barème indicatif : 5 points (2/1/1/1)

Soit E un espace vectoriel de dimension finie n sur un corps K. On se donne u ∈ End(E)
un endomorphisme et F ⊆ E un sous-espace u stable de E. On notera πF : E → E/F la
projection canonique de E vers le quotient E/F et uF ∈ End(F) l’endomorphisme de F
induit par u.

1. Rappeler de quelle façon u induit un endomorphisme de E/F que nous noterons
u ∈ End(E/F). Montrer que les polynômes caractéristiques vérifient la relation :

χu = χuFχu.

Comme F est u-stable, on a u(F) ⊂ F et l’application πF∘u : E→ F vérifie πF∘u(F) = {0}.
Par propriété universelle du quotient, on en déduit qu’il existe u : E/F → E/F tel que
πF ∘ u = u ∘ πF.

Si on choisit G un supplémentaire de F dans E, la projection πF restreinte à G réalise
un isomorphisme entre G et E/F. Si z ∈ E/F, il existe donc un unique x ∈ G tel que
z = πF(x) et on a u(z) = πF(u(x)). Cela signifie que si B = BF∪BG est une base adapatée
à la décomposition E = F⊕G, on a une décomposition par bloc

MatB(u) =
(︃

MatBF
*

0 Mat
BG

(u)

)︃
.

Ci-dessus, la notation BG désigne la base de E/F induite par celle de G. Avec cette
décomposition par blocs, il est évident que les polynômes caractéristiques vérifient

χu = χuFχu.

2. Montrer que si x ∈ E, les sous-espaces cycliques satisfont à l’égalité :

πF (K[u] · x) = K[u] · πF(x).
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La notation K[u] · x désigne le sous-espace cyclique engendré par x :

K[u] · x := {P(u)(x) | P ∈ K[X]} = Vect
(︁
uj(x), j ≥ 0

)︁
⊂ E.

Si y = uj(x) (pour j ≥ 0), alors on a

πF(y) = πF ∘ uj(x) = u ∘ πF ∘ uj−1(x) = · · · = uj (πF(x)) .

Par linéarité, on a alors

∀P ∈ K[X], πF(P(u)(x)) = P(u) (πF(x))

ce qui est exactement la relation cherchée.

3. En déduire que si u est cyclique, alors u l’est également.

Si u est cyclique, il existe x ∈ E tel que K[u] · x = E et, pour ce vecteur, on en déduit
donc

K[u] · πF(x) = πF (K[u] · x) = πF(E) = F

car l’application quotient est surjective. Ceci signifie bien que u est cyclique pour le
vecteur πF(x).

4. Donner un exemple de situation où uF et u sont cycliques alors que u ne l’est pas.

Si on se place sur E = K2 et F = Ke1, l’application u = IdE n’est pas cyclique mais
elle le devient sur E/F ≃ K.

Exercice 2 — Barème indicatif : 5 points (1/1/1/1/1)

Soit (E, ⟨·, ·⟩) un espace hermitien. Soit u ∈ End(E) un endomorphisme. On rappelle
que u est dit hermitien si u* = u et anti-hermitien si u* = −u.

1. On suppose que u est hermitien. Démontrer que ⟨x, y⟩u := ⟨u(x), y⟩ est une forme
hermitienne sur E. À quelle condition (portant sur u) cette forme est-elle un produit
scalaire hermitien sur E ?

La condition de sesquilinéarité est bien évidemment satisfaite et la symétrie hermitien
provient du caractère hermitien de u. En effet, si x et y ∈ E, on a :

⟨x, y⟩u = ⟨u(x), y⟩ = ⟨x, u*(y)⟩ = ⟨x, u(y)⟩ = ⟨u(y), x⟩ = ⟨y, x⟩u.

Cette forme hermitienne est un produit scalaire si et seulement u est défini positif.

2. On suppose que u est anti-hermitien.
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2.1 Justifier qu’il existe une base orthonormée de E formée de vecteurs propres de u et
que les valeurs propres de u sont imaginaires pures.

Un endomorphisme anti-hermitien est en particulier normal donc il est diagonalisable
en base orthonormée. De plus, si λ ∈ Sp(u), alors

λ⟨x, x⟩ = ⟨u(x), x⟩ = ⟨x, u*(x)⟩ = ⟨x,−u(x)⟩ = ⟨x,−λx⟩ = −λ⟨x, x⟩

et donc λ = −λ et λ est imaginaire pure.

2.2 Démontrer que |det(IdE + u)| ≥ 1.

Avec ci-dessus, on a
det(IdE + u) =

∏
k=1

(1+ iµk)

avec λk = iµk les valeurs propres de u. On en déduit immédiatement la minoration
annoncée.

Soit n ≥ 1. On considère E = Cn que l’on munit du produit scalaire hermitien
canonique : ⟨X, Y⟩ = tXY. Soit M ∈ Mn(C). On suppose que la matrice H = 1

2(M+M*)
est hermitienne définie positive.

3. Démontrer que H ∈ GLn(C).

Une matrice hermitienne définie positive est en particulier de rang maximal donc
inversible.

4. On considère ⟨·, ·⟩H le produit scalaire hermitien associé à H comme à la question 1.
Soit B = 1

2(M−M*). Démontrer que l’endomorphisme

uM :

{
E −→ E

X ↦−→ H−1BX

est un endomorphisme anti-hermitien de l’espace hermitien (E, ⟨·, ·⟩H).

On calcule pour X, Y ∈ Cn :

⟨uM(X), Y⟩H = ⟨H (UM(X)) , Y⟩ = ⟨HH−1BX, Y⟩
= ⟨BX, Y⟩ = ⟨X,−BY⟩ = −⟨H−1HX,BY⟩
= −⟨HX,H−1BY⟩ = −⟨X,uM(Y)⟩H

et donc uM est bien anti-hermitien pour le produit scalaire considéré. Si dessus, on a
utilisé le fait que B est anti-hermitienne (4ième égalité) et que H−1 est elle hermitienne
(6ième égalité).

5. Déduire de ce qui précède que detH ≤ |detM|.

D’après la question 2.2, on a |det(IdE + uM)| ≥ 1 et donc :

1 ≤ |det(IdE + uM)| =
⃒⃒⃒
det(In +H−1B)

⃒⃒⃒
=

|det(H+ B)|

det(H) =
|det(M)|

det(H)
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ce qui est bien l’inégalité annoncée.

Exercice 3 — Barème indicatif : 10 points (4/4/2)

Soit E un R-espace vectoriel de dimension n > 1. Soit q et q ′ deux formes quadratiques
non dégénérées sur E, dont on note b et b ′ les formes polaires.
1. On rappelle que le cône isotrope de la forme q est

C(q) = {x ∈ E | q(x) = 0} .

1.1 Montrer que C(q) est soit un point, soit une réunion de droites vectorielles. Donner
des exemples de formes quadratiques q1 et q2 telles que C(q1) (resp. C(q2)) est une
réunion finie (resp. infinie) de droites.

Si x ∈ C(q) et λ ∈ R, alors q(λx) = λ2q(x) = 0 et donc C(q) est stable par
homothétie : c’est donc soit le singleton {0} soit une réunion de droites. Sur R2,
la forme q1(x) = x21 − x22 est non dégénérée et son cône isotrope est la réunion de
2 droites (

{
(x1, x2) ∈ R2 | x1 = ±x2

}
). Sur R3, la forme q2(x) = x21+x22−x23 est non

dégénérée et son cône isotrope est une surface qui est une réunion d’une infinité de
droites.

1.2 Montrer que si q et q ′ sont proportionnelles (c’est-à-dire s’il existe λ ∈ R× tel que
q ′ = λq), alors C(q) = C(q ′).

C’est évident.

1.3 Montrer que si C(q) = {0}, alors q est de signature (n, 0) ou (0, n).

Si la signature de q est de la forme s, n− s avec 0 < s < n, on sait alors que l’on
peut trouver une base (e1, . . . , en) de Rn orthogonale pour q avec q(ek) = 1 pour
k = 1, . . . s et q(ej) = −1 pour j > s. Le vecteur (non nul) x = e1 − es+1 est alors
isotrope.

1.4 En déduire que, en général, l’égalité C(q) = C(q ′) n’implique pas que q et q ′ sont
proportionnelles. Les deux formes quadratiques q1(x) = x21+ x22 et q2(x) = x21+ 2x22
sont définies positives sur R2 (donc anisotropes) et elles ne sont évidemment pas
proportionnelles.

Nous allons montrer que, en dehors de l’obstruction soulevée à la question 1.4, la
réciproque de la question 1.2 est vraie. On suppose donc à partir de cette question que

C(q) = C(q ′) ̸= {0},

et notre objectif est de montrer que q et q ′ sont proportionnelles.
2. Soit y un vecteur isotrope non nul pour q et q ′.
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2.1 On note Hy (resp. H ′
y) le sous-espace orthogonal à Vect(y) par rapport à la forme

bilinéaire b (resp. b ′). Pourquoi ces sous-espaces sont-ils des hyperplans de E ?

Hy = {x ∈ E | b(y, x) = 0} = kerb(y, ·). Or comme q est non dégénérée, l’application
linéaire

ϕq : E → E*

y ↦→ b(y, ·)

est un isomorphisme, donc b(y, ·) est une forme linéaire non nulle dès lors que y
est non nul. Son noyau est alors un hyperplan de E. C’est exactement le même
argument pour H ′

y.

2.2 Soit x ∈ E. On définit Dx,y = {x + αy, α ∈ R}. Calculer q(x + αy) et en déduire
que si x ∈ Hy, alors

Dx,y ∩ C(q) =

{
Dx,y si x ∈ C(q)

∅ si x /∈ C(q).

Pour tout α ∈ R, on a

q(x+ αy) = b(x+ αy, x+ αy) = q(x) + 2αb(x, y) + α2q(y),

en utilisant la bilinéarité et la symétrie de la forme b. Puisque y est un vecteur
isotrope, on a q(y) = 0, et donc q(x+ αy) = q(x) + 2αb(x, y). Si de plus x ∈ Hy,
alors le terme b(x, y) est aussi nul, et donc q(x+ αy) = q(x). On en déduit que si
x ∈ C(q) alors pour tout z ∈ Dx,y, on a q(z) = 0, c’est-à-dire Dx,y ⊆ C(q), ce qui
donne la première alternative. Si par contre q(x) ̸= 0, alors pour tout z ∈ Du,v, on
a q(z) ̸= 0, ce qui montre que Dx,y ∩ C(q) = ∅.

2.3 Montrer que si x /∈ Hy alors Dx,y ∩ C(q) est réduit à un point que l’on précisera.

Si x /∈ Hy alors q(x+αy) = q(x)+ 2αb(x, y) avec b(x, y) ̸= 0. Donc q(x+αy) = 0
pour un unique α (qui est −q(x)/2b(x, y)). Ainsi,

Dx,y ∩ C(q) =

{
x−

q(x)

2b(x, y)
y

}
.

2.4 Déduire des questions 2.2 et 2.3 que considérer le cardinal de Dx,y ∩ C(q) suffit à
distinguer les vecteurs x qui appartiennent à Hy de ceux qui n’y appartiennent pas.
En déduire que Hy = H ′

y.

D’après 2.2 et 2.3, on a x ∈ Hy si et seulement si Dx,y ∩ C(q) est infini (en fait :
une droite affine) ou l’ensemble vide. Comme C(q) = C(q ′) par hypothèse, ceci
est équivalent à demander à ce que Dx,y ∩ C(q ′) soit infini ou l’ensemble vide,
c’est-à-dire à ce que x appartienne à H ′

u (car les résultats de 2.2 et 2.3 s’applique
tout aussi bien à q ′).
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3. On note toujours y un vecteur isotrope pour q et q ′ comme au début de la question 2.
3.1 Montrer qu’il existe λy ∈ R× tel que b ′(y, ·) = λyb(y, ·).

On utilise le résultat du cours qui dit que deux formes linéaires (ici b(y, ·) et b ′(y, ·))
ont le même noyau si et seulement si elles sont colinéaires.

3.2 Montrer que pour tout x /∈ Hy, q ′(x) = λyq(x) (penser à la question 2.3).

Si x /∈ Hy, alors les singletons Dx,y ∩ C(q) et Dx,y ∩ C(q ′) sont égaux, et donc

x−
q(x)

2b(x, y)
y = x−

q ′(x)

2b ′(x, y)
y

d’où
q(x)

b(x, y)
=

q ′(x)

b ′(x, y)
=

q ′(x)

λyb(x, y)

d’après 3.1. En simplifiant par b(x, y), on en déduit le résultat voulu.

3.3 Montrer que le complémentaire de Hy dans E est une partie dense dans E et
conclure.

Soit x ∈ E \Hy. Si w ∈ Hy, alors pour tout ε > 0, b(y,w+ εx) = εb(y, x) ̸= 0, et
donc w + εx /∈ Hy. Comme w + εx tend vers w lorsque ε tend vers 0, on a bien
montré la densité de E \Hy dans E.
Pour conclure, il suffit de dire que q ′ et λyq coïncident sur cette partie dense
d’après 3.2, et qu’elles sont continues (par exemple parce qu’une fois que l’on a
fixé une base de E, leur écriture en coordonnées est polynomiale).

6


