
Licence de Mathématiques — 3ème année 2025–2026

Algèbre linéaire et bilinéaire

Formes quadratiques

Exercice 1 [Orthogonalité]
Soit E un espace vectoriel de dimension finie muni d’une forme quadratique q (de

forme polaire fg et de noyau N(q)). Si F ⊂ E est un sous-espace, on note F⊥ ⊂ E son
orthogonal pour la forme q :

F⊥ : = {x ∈ E | ∀y ∈ F, fq(x, y) = 0} .

1. Montrer que si F et G sont deux sous-espaces de E, alors (F+G)⊥ = F⊥ ∩ G⊥.
2. On note f̂q : E → E* l’application induite par fq. Montrer que si F ⊂ E est un
sous-espace, alors on a

F⊥ =
∘(︁
f̂q(F)

)︁
où ∘A (avec A ⊂ E*) est l’orthogonal pour la dualité, c’est-à-dire l’ensemble des vecteurs
de E qui s’annulent sur les éléments de A. En déduire que

dim(F⊥) = dim(E) − dim(F) + dim(N(q) ∩ F). (1)

3. Si F est un sous-espace, montrer que F+N(q) ⊂ F⊥⊥. Calculer dim(F⊥⊥) et conclure
que F+N(q) = F⊥⊥ grâce à la formule de Grassman.
4. Vérifier ces affirmations sur l’espace E = k3 muni de la forme quadratique dont
l’expression dans la base canonique est q(x, y, z) = 2xy et en fixant F = Vect(e1, e2) et
G = Vect(e2, e3).

Exercice 2 [Orthogonalité II]
On se donne (E, q) comme dans l’exercice 1.

1. Pour F et G deux sous-espaces de E, montrer que F⊥ +G⊥ ⊂ (F ∩ G)⊥.
2. On considère le cas E = k2 et q(x, y) = x2. On pose alors F = k ·(1, 1) et G = k ·(1,−1).
Calculer F ⊥ et G⊥ et montrer que l’inclusion ci-dessus peut être stricte.
3. Montrer que si q est non dégénérée, on a l’égalité F⊥ +G⊥ = (F ∩ G)⊥.
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Exercice 3 [Restriction d’une forme non dégénérée]
Soient E un espace vectoriel de dimension finie muni d’une forme quadratique q et F

un sous-espace de E.
1. Calculer N

(︁
q|F

)︁
et en déduire que q|F est non dégénérée si et seulement si F∩F⊥ = {0}.

2. On suppose maintenant q non dégénérée (sur E). Montrer que q|F est non dégénérée
si et seulement si E = F ⊕ F⊥ (utiliser la formule (1)).

Exercice 4 [Forme quadratique sur les matrices]
Soit n ≥ 1 un entier. On considère la forme bilinéaire (A,B) ↦→ Tr(AB) sur Mn(k)

(avec k un corps de caractéristique différente de 2).
1. Montrer que cette forme est non dégénérée.
2. Calculer sa signature lorsque k = R (penser aux matrices symétriques et antisymé-
triques).
3. Que se passe-t-il si l’on considère la forme bilinéaire (A,B) ↦→ Tr(A)Tr(B) ?

Exercice 5 [Algorithme de Gauß]
Appliquer l’algorithme de Gauß aux formes quadratiques réelles suivantes :

(1) q1(x, y, z) = 2x2 + y2 − z2 + 3xy− 4xz ;
(2) q2(x, y, z) = 2x2 − 2y2 − 6z2 + 3xy− 4xz+ 7yz ;
(3) q3(x, y, z, t) = xy+ yz+ zt+ tx ;
(4) q4(x, y, z, t, s) = xy− xt+ yz− yt+ ys+ zt− zs+ 2st.

Dans chaque cas, préciser la signature de la forme quadratique.

Exercice 6 [Forme quadratique définie (cas réel)]
Soient E un espace vectoriel de dimension finie sur R et q une forme quadratique

anisotrope : q(x) = 0 ⇒ x = 0. Montrer que q est définie positive ou définie négative.

Exercice 7 [Partie réelle d’une forme complexe]
Soit E un C-espace vectoriel de dimension finie et q une forme quadratique sur E.

Montrer que l’expression qR(x) = Re(q(x)) définit une forme quadratique sur le sous-
espace réel E (en oubliant que E est un C-espace vectoriel) et calculer la signature de qR
en fonction du rang de q.
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Pour aller plus loin
Exercice 8 [Relation de congruence]

On considère la relation de congruence sur M2(C) tout entier et on cherche à décrire
les classes d’équivalence M ∼ N ⇐⇒ ∃P ∈ GL2(C), M = PN tP.
1. Montrer que la décomposition M2(C) = S2(C) ⊕ A2(C) est stable sous l’action de
GL2(C). Donner un représentant de chaque classe de S2(C) et de A2(C).
2. On suppose que M = S+A avec S symétrique et A antisymétrique (avec S ̸= 0 ̸= A).

Si S est de rang 1, montrer d’abord que M est congruente à
(︃

1 a

−a 0

)︃
puis à

(︃
1 1

−1 0

)︃
.

3. Si maintenant S est de rang 2, montrer que M est congruente à Mz :=

(︃
1 z

−z 1

)︃
.

Vérifier que Mz ∼ Mw ⇐⇒ z = ±w.
4. Conclure que les classes de congruences sur M2(C) sont représentées par les matrices

0,

(︃
1 0

0 0

)︃
, I2,

(︃
0 1

−1 0

)︃
,

(︃
1 1

−1 0

)︃
et Mz ∼ M−z (z ̸= 0).

Exercice 9 [Formes sur Q]
1. Montrer que si p1 et p2 sont deux entiers premiers distincts, alors p1 ̸= p2 dans
Q×/(Q×)2.
2. En déduire que Qn admet une infinité de formes quadratiques non congruentes.

Exercice 10 [Sous-espaces totalement isotropes]
Soit E un espace vectoriel de dimension finie muni que q non dégénérée.

1. Si F est un sous-espace totalement isotrope (cela signifie que q|F = 0), montrer que
F ⊂ F⊥ et en déduire que 2 dim(F) ≤ dim(E).
2. Donner un exemple où l’égalité se produit.
3. On suppose que E possède un vecteur isotrope non nul x ∈ E (avec donc q(x) = 0).
Montrer qu’il existe y ∈ E avec q(y) = 0 et fq(x, y) = 1, c’est-à-dire que E contient un
plan hyperbolique U.
4. Montrer qu’il existe une décomposition orthogonale

E = U1 ⊕ · · · ⊕ Um ⊕ F

avec q|Ui
hyperbolique pour tout i = 1 . . .m et q|F anisotrope, c’est-à-dire : x ∈ F et q(x) =

0 ⇒ x = 0.
5. Montrer enfin que 2m ≤ dim(E).
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Exercice 11 [Donné au CC3 en 2024–2025]

On note Nn(K) ⊂ Mn(K) l’ensemble des matrices nilpotentes de taille n ≥ 1 (avec
K un corps de caractéristique différente de 2) et Tn(K) (resp. T+

n(K)) l’ensemble des
matrices triangulaires supérieures de taille n (resp. l’ensemble des matrices triangulaires
supérieures de diagonale nulle). On souhaite montrer l’énoncé suivant :

Si V ⊂ Nn(K) est un sous-espace vectoriel de Mn(K), alors dim(V) ≤ n(n− 1)

2
.

1. Donner un exemple de sous-espace vectoriel V ⊂ Nn(K) avec dim(V) =
n(n− 1)

2
.

2. On considère la forme quadratique q : Mn(K) → K définie par q(M) = Tr(M2) et on
note (Ei,j)i,j=1,...,n la base canonique de Mn(K).
2.a. Calculer Tr(MEi,j) pour M ∈ Mn(K) et 1 ≤ i, j ≤ n.
2.b. Montrer que q est non dégénérée et que q(M) = 0 pour tout M ∈ Nn(K).
2.c. En déduire que, si V ⊂ Nn(K) est un sous-espace vectoriel, alors Tr(MN) = 0 pour

tout (M,N) ∈ V.

3. Dans cette question, on suppose que le corps K est celui des nombres réels K = R.
3.a. Calculer la signature de la forme q en exhibant des sous-espaces de Mn(R) de

dimension maximale sur lesquels la forme q est définie négative/positive.
3.b. Soit alors V ⊂ Nn(R) un sous-espace vectoriel. Montrer que dim(V) ≤ n(n−1)

2 . Pour
cela, raisonner par l’absurde et considérer V ∩ Sn(R) (avec Sn(R) l’ensemble des
matrices symétriques).

4. On revient au cas général où le corps K est quelconque. On se donne V ⊂ Nn(K) et
on note VT : = V ∩ T+

n(K). On fixe également W ⊂ V un supplémentaire de VT dans V :
V = VT ⊕ W.
4.a. Calculer T+

n(K)
⊥ l’orthogonal de T+

n(K) pour la forme q et en déduire que Nn(K) ∩
T+
n(K)

⊥ = T+
n(K).

4.b. Montrer que W ∩ T+
n(K)

⊥ ⊂ VT puis que W ∩ T+
n(K)

⊥ = {0}.

4.c. Établir l’inclusion W ⊕ T+
n(K)

⊥ ⊂ V⊥
T et en déduire que dim(V) ≤ n(n− 1)

2
.
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