
Licence de Mathématiques — 3ème année 2025–2026

Algèbre linéaire et bilinéaire

Espaces euclidiens et hermitiens

Exercice 1 [Un calcul d’adjoint]
Pour A ∈ Mn(C), on pose

(A,B) = Tr
(︁

tAB
)︁
.

1. Montrer que c’est un produit scalaire sur Mn(C) et que la norme associée vérifie :

∀A,B ∈ Mn(C), ‖AB‖ ≤ ‖A‖ ‖B‖ .

2. Calculer la norme de la forme linéaire

Tr :
{

Mn(C) −→ C
A ↦−→ Tr(A).

3. On fixe A ∈ Mn(C) et on considère l’application linéaire

ΦA :

{
Mn(C) −→ Mn(C)

X ↦−→ tAXA.

Calculer l’adjoint (pour le produit scalaire ci-dessus) de ΦA.

Exercice 2 [Matrice de Gram]
Soit E un espace euclidien dont on note (x, y) ↦→ ⟨x, y⟩ le produit scalaire. Si

(u1, . . . , up) est une famille de vecteurs de E, on pose

G(u1, . . . , up) = (⟨ui, uj⟩)1≤i,j≤p ∈ Mp(R).

1. Montrer que G(u1, . . . , up) est symétrique positive et que

rg(G(u1, . . . , up)) = rg(u1, . . . , up).

2. Montrer que toute matrice symétrique positive peut s’écrire sous la formeG(u1, . . . , up).

3. Soient (u1, . . . , up) et (v1, . . . , vp) deux familles de vecteurs de E. Montrer qu’il existe
f ∈ O(E) tel que f(ui) = vi pour tout i = 1 . . . p si et seulement si G(u1, . . . , up) =
G(v1, . . . , vp).
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Exercice 3 [Endomorphismes hermitiens]
Soit E un espace hermitien. On notera ⟨· , ·⟩ le produit hermitien et H(E) (resp.

H+(E)) l’ensemble des endomorphismes hermitiens (resp. hermitiens positifs) de E.

1. Soit u ∈ End(E) vérifiant ∀ x ∈ E, ⟨x, u(x)⟩ = 0. Montrer que u = 0. Que peut-on
dire si E est seulement supposé euclidien ?
2. Soit toujours u ∈ End(E). Montrer que u ∈ H(E) (resp. u ∈ H+(E)) si et seulement
si ∀ x ∈ E, ⟨x, u(x)⟩ ∈ R (resp. ∈ R+).
3. Pour u ∈ End(E), établir les égalités :

Ker(u) = Ker(u* ∘ u) et Im(u) = Im(u ∘ u*).

4. Soit u ∈ H+(E) un endomorphisme hermitien positif. Montrer que

x ∈ Ker(u)⇐⇒ ⟨x, u(x)⟩ = 0.

En déduire que si u, v ∈ H+(E) sont tels que u− v ∈ H+(E), alors

Ker(u) ⊂ Ker(v) et Im(v) ⊂ Im(u).

5. Soient u et v deux endomorphismes de E. Montrer que les assertions suivantes sont
équivalentes :

(i) ∃ λ ∈ R+, λu ∘ u* − v ∘ v* ∈ H+(E) ;
(ii) Im(v) ⊂ Im(u) ;

(iii) ∃w ∈ End(E), v = u ∘w.

Exercice 4 [Inégalité de Hadamard]
Soit M = (mi,j)1≤i,j≤n ∈ H+

n une matrice hermitienne positive.

1. Établir l’inégalité 0 ≤ det(M) ≤
∏n
i=1mi,i.

2. En écrivant M = A + iB, montrer que A est symétrique positive et que B est
antisymétrique. Montrer enfin que det(M) ≤ det(A).

Exercice 5 [Endomorphismes de la boule unité]
Soit E un espace euclidien et u ∈ L(E).

1. Montrer que ‖u*‖ = ‖u‖ (où ‖u‖ désigne la norme subordonnée à la norme euclidienne
de E).

2. En déduire que, si ‖u‖ ≤ 1, on a Ker(u− Id) = Ker(u* − Id) (on pourra développer
‖u*(x) − x‖2 pour x ∈ Ker(u− Id) et utiliser la première question). En conclure que E
se décompose en une somme orthogonale :

E = Ker(u− Id) ⊕ Im(u− Id).
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3. Toujours sous l’hypothèse ‖u‖ ≤ 1, montrer que la suite

un :=
1

n+ 1

n∑
k=0

uk

converge vers le projecteur orthogonal sur Ker(u− Id).

Exercice 6 [Réduction des endomorphismes normaux — cas réel]
Soit E un espace euclidien et u ∈ End(E).

1. Montrer que u admet toujours une droite ou un plan stable.
2. À partir de maintenant, on suppose u normal (u ∘ u* = u* ∘ u). Montrer que si F ⊂ E

est stable par E, F⊥ est également stable par u.
3. En déduire qu’il existe une base orthonormée dans laquelle la matrice de u est diagonale
par blocs de taille 1 ou 2 et préciser la forme des blocs 2× 2.

Pour aller plus loin

Exercice 7 [Matrices symétriques complexes]

Dans tout cet exercice, on note Sn(C) (respectivement Sn(R)) l’ensemble des matrices
symétriques complexes (respectivement réelles).

Questions préliminaires :

1. En considérant la matrice
M2 =

(︃
2 i

i 0

)︃
,

montrer qu’une matrice M de Sn(C) n’est pas nécessairement diagonalisable. Que dire si
M ∈ Sn(R) ?
2. Soit M ∈ Sn(C) une matrice symétrique. Justifier que M est congruente à une matrice
de la forme (︃

Idr 0

0 0

)︃
(pour un certain entier 1 ≤ r ≤ n) et en déduire qu’il existe P ∈ Mn(C) tel que M = tPP.
Si M ∈ Sn(R), peut-on toujours trouver P ∈ Mn(R) comme ci-dessus ?
3. Soient A et B ∈ Sn(R) telles que AB = BA. En raisonnant par récurrence sur n ≥ 1,
montrer qu’il existe O ∈ On(R) une matrice orthogonale tel que tOAO et tOBO soient
diagonales (et réelles).
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Réduction des matrices symétriques complexes :

Dans le reste de l’exercice, on va montrer le résultat suivant : si M ∈ Sn(C), alors il
existe U ∈ Un une matrice unitaire et 0 ≤ λ1 ≤ · · · ≤ λn des réels positifs tels que

M = U

⎛⎜⎜⎜⎜⎜⎝
λ1 0 · · · 0

0 λ2
. . . ...

... . . . . . . 0

0 · · · 0 λn

⎞⎟⎟⎟⎟⎟⎠ tU.

4. Si M ∈ Sn(C), on considère MM. Montrer que MM est une matrice hermitienne
positive et qu’il existe V ∈ Un telle que t

VMMV = D avec D une matrice diagonale avec
des coefficients réels positifs.
5. On poseN := tVMV . Vérifier queN est symétrique et calculerNN. On écritN = A+iB

avec A et B ∈ Mn(R). En exprimant NN en fonction de A et B, montrer que A et B
commutent : AB = BA. Vérifier également que A et B sont symétriques.
6. Montrer qu’il existe une matrice orthogonale O ∈ On(R) telle que tONO est diagonale
et conclure.
7. Donner une matrice U et des réels positifs λ1, λ2 pour l’exemple de la matrice M2 de
la question 1.

Exercice 8 [Donné au CC3 en 2024–2025]
Dans cet exercice, Un ⊂ GLn(C) désigne le groupe des matrices unitaires et Tn(C) ⊂

Mn(C) le sous-espace des matrices triangulaires supérieures.

1. Soit P ∈ GLn(C) une matrice inversible. Montrer qu’il existe T une matrice triangulaire
supérieure et U ∈ Un telles que P = UT (on pourra penser à P comme la famille de ses
colonnes par exemple).
2. En déduire que toute matrice complexe est unitairement semblable à une matrice
triangulaire supérieure :

∀M ∈ Mn(C), ∃ (U, T) ∈ Un ×Tn(C), M = UTU*.

3. Soit A = (ai,j)
n
i,j=1 une matrice complexe et (λ1, . . . , λn) ses valeurs propres (comptées

avec multiplicités).
3.a. Calculer Tr(A*A).
3.b. Montrer que

A est normale⇐⇒ n∑
i,j=1

|ai,j|
2 =

n∑
k=1

|λk|
2 .
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