REPRESENTATIONS LINEAIRES DES GROUPES
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RESUME. Nous étendons aux variétés kihlériennes compactes quelques
résultats classiques sur les représentations linéaires des groupes
fondamentaux des variétés projectives lisses. Notre approche, ba-
sée sur une interversion de fibrations a fibres tores vs variétés de
type général, fournit une alternative a celle de [Zuo96]. Enfin nous
étendons au cas kdhlérien les résultats généraux de convexité holo-
morphe pour les revétements associés connus dans le cas projectif.
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1. INTRODUCTION

Les travaux fondamentaux de Corlette et Simpson sur les représen-
tations linéaires complexes des groupes fondamentaux des variétés kih-
lériennes compactes [Sim92, Sim93, Sim94a, Sim94b| ainsi que ceux de
Gromov et Schoen sur leurs représentations a valeurs dans des corps
locaux [GS92| ont permis d’améliorer notre compréhension des groupes
fondamentaux des variétés algébriques lisses [Z1096, Zuo099, JosZuo00,
LasRam96]| -voire aussi le survey [ABCKT96]- et des revétements as-
sociés [KatRam98, Eys04]. Le développement de ces idées a permis ré-
cemment d’établir que le revétement universel d’'une variété projective
lisse complexe de groupe fondamental linéaire est holomorphiquement
convexe |[EKPR12| -voir aussi |[Eysll] pour un survey récent.
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La premiére motivation de ce travail était de généraliser au cas des
variétés kihlériennes compactes les résultats de [Eys04, EKPR12]. Ceux
ci sont limités au cas projectif car plusieurs résultats sur la théorie
des représentations du groupe fondamental qui sont utilisés de facon
essentielle dans [Eys04] ne sont pas disponibles dans la littérature pour
le cas kdhlérien général. Ces résultats sont 'ubiquité des Variations de
Structure de Hodge [Sim92] et la théorie des ensembles constructibles
absolus de classes de conjugaison de représentations linéaires complexes
[Sim93|. Le présent article remédie & cette déficience de la littérature
en établissant une version kdhlérienne de ces outils.

Notre approche repose sur un travail important de Zuo [Zuo96] dont
le résultat principal doit étre vu comme une formulation du principe que
la théorie des représentations linéaires complexes des groupes kihlériens
se rameéne au cas projectif. Nous affinons ce principe en 'unifiant avec
'existence du morphisme de Shafarevich (voir la définition 2.13) :

Théoréme 1.

Soit X une wvariété kihlérienne compacte et p : m(X) — GLx(C)
une représentation linéaire dimage Zariski dense dans un groupe semi-
simple. Alors le morphisme de Shafarevich sh, : X — Sh,(X) existe et
Sh,(X) est une variété projective algébrique normale de type général
si p(m1(X)) est sans torsion. De plus, sie: X' — X est un revétement
étale fini tel que e*p(m1(X')) est sans torsion, e*p factorise par un

modeéle lisse de She-,(X').

On notera que l'existence d'un tel e est impliquée par le lemme de
Selberg. En raison d’un point délicat dans la preuve de [Zuo96|, nous
avons fourni une démonstration nouvelle de ses résultats, basée sur
[Eys04] et un énoncé qui nous semble d’un intérét indépendant :

Théoréme 2.

Soit X wune variété kihlérienne compacte et f : X — K une appli-
cation holomorphe dans une variété de Kummer dont les composantes
connexes des fibres lisses sont de type général.

1l existe alors une application holomorphe génériquement finie r :
X' — X, une application biméromorphe X' --» X" et g : X" — Y
un fibré principal holomorphe de groupe structurel un tore complexe, Y
étant une variété algébrique de type général.

L’ingrédient principal de la preuve est I’additivité des dimensions de
Kodaira quand la fibre est de type général dans le cas kéhlérien [Nak99).
Ainsi formulé, le principe de Zuo permet de donner une définition
d’ensemble constructible absolu de la variété des caractéres du groupe
fondamental d’une variété kihlérienne compacte généralisant [Sim93|
puis de généraliser au cas kdhlérien les résultats de [Eys04, EKPR12] :
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Théoréme 3.
Soit X wune variété kdhlérienne compacte, G un groupe algébrique li-
néaire réductif défini sur Q et M C Mp(X,G) un ensemble construc-
tible absolu de la_variété des caractéres associée.

Considérons HY, le sous-groupe de m1(X) défini comme lintersection
des noyaux de toutes les représentations semisimples m(X) — G(C)

dont la classe de conjugaison est dans M et, si M = Mp(X,G), f[;‘f;o le
sous-groupe de w1 (X) défini comme lintersection des noyaux de toutes
les représentations m (X) — G(A) ou A est une C-algébre arbitraire.

Le revétement galoisien de groupe HY, (resp. H\X;O)
XA]"(; = )/(v”/ﬁ]’(;, x = 0,00
est alors holomorphiquement convexe.

On établira enfin un théoréme de structure pour la I'-réduction d’une
représentation linéaire d’un groupe kéhlérien :

Théoréme 4.

Soit X une variété kihlérienne compacte, Soit p : m(X) — GLx(C)
une représentation linéaire. Alors sie : X' — X est un revétement étale
fini tel que e*p(m1(X")) est sans torsion, la I'-réduction She«,(X') est
biméromorphe a espace total d’une fibration lisse T : Sh,(X) — S,(X)
en tores complexes sur une variété algébrique S,(X), de type général.

Outre les éléments cités ci-dessus, la démonstration utilise une nou-
velle fois de fagon cruciale [Nak99| via ses résultats sur les fibrations
en ()-tores.

Décrivons maintenant le contenu de l’article. La section 2 donne les
définitions et les premiéres propriétés de la I'-réduction et du mor-
phisme de Shafarevich. La section 3 donne une démonstration du théo-
reme 1. La section 4 traite les résultats que nous venons d’énoncer
dans le cas des représentations linéaires résolubles des groupes kihlé-
riens comme prélude a ’étude du cas général. La section 5 établit les
résultats de convexité holomorphe du théoréme 3. La section 6 établit
le théoréme 4.

Nous remercions S. Druel, V. Koziarz, M. Paun et C. Voisin pour
d’utiles remarques relatives a ce travail.

Remarque : Il est naturel d’appliquer ce travail & une question liée
au probléme de Serre de caractériser les groupes de présentation finie
apparaissant comme groupes fondamentaux d’une variéte projective
complexe (groupes projectifs complexes) : est ce que tout groupe kih-
lérien (groupe fondamental d’une variété kdhlérienne compacte) est un
groupe projectif complexe ?

La premiére version diffusée de ce travail arXiv :1302.5016v1 conte-
nait une preuve erronée de I’énoncé suivant qui implique que tout
groupe kéhlérien linéaire est commensurable & un groupe projectif com-
plexe.
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Théoréme 5.
Soit X une variété kihlérienne compacte et p : m(X) — ' une re-
présentation linéaire de son groupe fondamental. Il existe alors une
variété projective lisse Y et o : m(Y) — GLy(C) une représentation
dont ['tmage est un sous-groupe d’indice fini de I'.

En particulier, si m (X) est un groupe kihlérien linéaire, il existe une
variété projective lisse ayant pour groupe fondamental un sous groupe
d’indice fini de m(X).

Un travail en cours de rédaction donnera une preuve de cet énoncé
utilisant des techniques du probléme de Kodaira. Ces techniques étant
de nature assez différente des présentes, nous préférons renoncer a trai-
ter ici cette application.

2. '-REDUCTION ET MORPHISME DE SHAFAREVICH

2.1. I'-réduction. Soit X une variété kiahlérienne compacte connexe,
p : m(X) — ' un morphisme de groupes surjectif, w,u, : Xt — X
le revétement universel et u, : X, := Ker(p)\X* — X le revétement
associé a p.

Théoréme 2.1 (|Cam94]).

1l existe une application presque-holomorphe propre et connexe de va-
r1€tés kahlériennes g, : X'p -—» Y, T-équivariante, telle que pour tout
T € Xp tres général la fibre de g, passant par T est le plus grand sous-
ensemble analytique compact et connexe de Xp passant par T. De plus,
g, est unique a équivalence biméromorphe pres.

Rappelons qu’une application méromorphe f : X --+ Y est dite
presque holomorphe si I'image de son lieu d’indétermination n’est pas
Y ; de facon équivalente, cela signifie qu’elle induit une fibration propre
entre des ouverts de Zariski de X et Y. Rappelons également qu’un
point d’un espace complexe irréductible est dit trés général s’il n’est
pas contenu dans une réunion dénombrable de sous-espaces analytiques
fermés stricts.

Prenant les quotients par I', nous obtenons :

Corollaire 2.2 (|Cam94|, [Kol93]).

1l existe une application presque holomorphe et connexe, unique a équi-
valence biméromorphe prés, g, : X --» G,(X) vérifiant la propriété
sutvante : si f : Z — X est une application holomorphe (avec Z un
espace compleze irréductible et normal) dont ’image passe par un point
tres général de X, g, o f est constante si et seulement si la composée

m(2) iR (X)) 25 T est d’image finie.
Remarque 2.3. L’application g, est appelée I'-réduction dans [Cam94]

et son introduction a été motivée par I'usage des séries de Poincaré et le
théoréme de I'indice L* d’Atiyah par [Gro91]. Lorsque X est projective,
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elle est introduite dans [Kol93| sous le nom d’application de Shafarevich
associée a p. Nous suivrons ici la premiére terminologie, réservant la
terminologie de morphisme de Shafarevich & une notion plus précise
définie plus loin.

Définition 2.4.

Soit f: X --+Y une application méromorphe entre espaces complexes
compacts normaux. Un modeéle lisse de f est un diagramme X «—
X Ly v e que 1 et s sont des applications holomorphes
biméromorphes propres, f est holomorphe, X et Y des variétés lisses
et so f for. Un modéle lisse de [ est net sl existe p : X - X
une application holomorphe biméromorphe avec X' lisse telle que tout

diviseur f-exceptionnel est p-exceptionnel.

Par [Cam04, Lemma 1.3|, toute fibration méromorphe a un modéle
lisse et net.

Définition 2.5.

Nous appellerons géométrique tout quotient abélien ' de m (X)) véri-
fiant la propriété suivante : il existe A un tore complexe et une appli-
cation holomorphe a : X — A tel que I' apparaisse comme [tmage de
m1(X) dans m(A) sous a.

Exemple 2.6. Si I est abélien, on peut donner une description simple
de g, a l'aide du morphisme d’Albanese ax : X — Alb(X) de X.
En effet : T’ est alors un quotient de m(X)® = H,(X,Z), l'abélia-
nis¢ de m(X). Soit K le noyau du quotient H,(X,Z) — I', et B C
Alb(X) le plus grand sous-tore complexe T' C Alb(X) tel que m(T") <
m(Alb(X)) = Hi(X, Z) soit contenu dans K. Soit ¢ : Alb(X) — A, =
Alb(X)/B le quotient. Alors g, est la factorisation de Stein de la com-
posée (non surjective, en général) goax : X — A,.

Le groupe m1(A4,) = m(Alb(X))/K est un quotient abélien géomé-
trique de I' = I'®_ et le noterons fgeem.

2.2. Factorisation des représentations par la I'-réduction.

Lemme 2.7.

Soit p : m(X) — ' un quotient de m(X) avec I' sans torsion. Si
g, 1 X — Y désigne un modele lisse de la I'-réduction de X, la repré-
sentation p se factorise par g,, i.e. : il existe un morphisme de groupes
rendant commutatif le diagramme :

X) ? r
e

Dans ces conditions, on dira aussi que p se factorise par G,(X).
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Démonstration : Considérons un modele net g, : X — Y de la I'-
réduction de X et munissons Y de la structure orbifolde (pour les mul-
tiplicités classiques) induite par A [Cam04, Camlla, Camll1b|. L’ad-
jonction du Q-diviseur A a pour effet de rendre la suite des groupes
fondamentaux exacte :

m(Xy) — m(X) — m(Y/A) — 1.

D’autre part, le groupe fondamental orbifolde de (Y/A) se présente
naturellement sous la forme :

1 —T —mY/A) —mY)—1

ou T est un groupe engendré par des éléments de torsion. Par définition
de g, p(m1(X,)) est fini donc trivial et p se factorise donc par m (Y/A).
A nouveau, comme [ est sans torsion, I'image T" par p doit étre triviale,
ce qui signifie exactement que p se factorise par m(Y). O

Le lemme de Selberg stipule que si I' < Gly(C) est de type fini, T
admet un sous-groupe d’indice fini I sans torsion. Combiné avec le
lemme 2.7, il permet de déduire :

Corollaire 2.8.

Soit p: m(X) — I' < GIn(C) un quotient linéaire de m (X). Il existe
un revétement étale fini e : X' — X tel que si p' : m(X') — IV =
ple.m (X)) est la restriction de p, alors p' se factorise par un modéle
lisse gy : X' = Y':= Gy (X') de la 1" réduction de X'. Cette propriété
subsiste pour tout revétement étale X" — X dominant X'.

2.3. Fonctorialité, Groupe quotient. Les propriétés élémentaires
suivantes de fonctorialité et de représentation quotient se déduisent
sans difficulté de la propriété de base de la I'-réduction et nous en
ommettrons la preuve.

Introduisons les notations suivantes : si f : U — V est une ap-
plication holomorphe propre (non nécessairement surjective) entre es-
paces analytiques complexes, avec U normal et connexe, nous noterons
St(f): U — St(U/V) et st(f): St(U/V) — V sa factorisation de Stein
ou St(U/V') est normal, f = St(f) o st(f), St(f) est a fibres connexes
et st(f) est finie, d'image f(X).

Lemme 2.9.

Soit f: W — X wune application holomorphe surjective entre variétés
compactes Kdihlériennes connezxes, et p : m(X) — I' un quotient du
groupe fondamental de X. Soit pg:= f*(p) =po fo :m(W) -=»T'j :=
Im(pys). Alors g, = W ==+ G, (W) est la factorisation de Stein de la
composée g,o f : W --» G,(X) i.e. : g,, = St(g, 0 f).

Lemme 2.10.
Soit p : m(X) — I' < Gly(C) un quotient linéaire de m (X). Soit
gy : X -2 Y = G,(X) sa I'-réduction. Soit A < T' un sous-groupe
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normal et A son adhérence de Zariski dans Gly(C). Notons H le sous-
groupe normal de I défini par H := T NA. La représentation composée
o:m(X)—T/H <T/A est alors un quotient linéaire de m(X). Soit
9o : X --» Z := G,(X) la T/H-réduction de X.

(1) Il existe alors une application méromorphe dominante g/, Y =
Gy(X) -+ Z = G,(X) telle que g» = gp/s © g, et la restriction
Gpjoyz + Xz — Y, a une fibre trés générale X, de g, n'est autre que
la T',-réduction de X, ot o, désigne la restriction de o a m(X,) et
I, =o0.(m(X,)).

(2) Si les images de p et o sont sans torsion, ce qui est le cas quitte &
remplacer X par un revétement étale fini, p, o et o, se factorisent
respectivement par Y, Z, et Y,.

(3) Si p (et donc o) se factorise par g, et si p* : m(G,(X)) — T
(resp. o* : m(G,(X)) — I'/H) factorisent p (resp. o), alors :
GU*(G/J(X)) = GO’(X) et 9p/c = Go~ -

Le diagramme commutatif correspondant est :

9p

X Gy(X) =Y

k%

Go(X): =27

Nous utiliserons ce lemme de différentes maniéres : en prenant pour
A le radical résoluble de I', I'/A étant alors semi-simple, mais aussi en
considérant pour A I'image par p de m1(X,,), si X, est la fibre générale
d’une fibration presque-holomorphe f : X — W (sans lien avec p, a
priori).

2.4. Quotient par un groupe abélien. Nous allons donner une des-
cription de la situation du lemme 2.10 lorsque H est abélien. C’est aussi
une version relative de I’exemple 2.6 ci-dessus.

Rappelons (cf. [Cam85]) que si f : X — S est une application ho-
lomorphe surjective a fibres connexes avec X kihlérienne compacte, il
existe une application d’Albanese relative ax/g : X --+ Alb(X/S), au-
dessus de S, presque holomorphe au-dessus du lieu de lissité de f, dans
laquelle : Alb(X/S) est kdhlérienne compacte, a(f) : Alb(X/S) — S
est holomorphe a fibres connexes avec f = a(f) o axyg, telle que, si
X, = f74s),s € S est lisse, alors AlIb(X/S), = a(f)7'(s) est iso-
morphe & Alb(Xj) (variété d’Albanese de Xj) et telle que la restriction
de ax/s a X, est un morphisme d’Albanese pour X,. En général, ax/g
n’est ni surjective ni connexe.

Lemme 2.11.
Soit f : X — Z une application holomorphe surjective a fibres connexes,
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2 € Z un point trés général et H un quotient géométrique de m(X.).

1l existe alors une application presque-holomorphe surjective
qu : AI(X/Z) — Ay(X/Z)

au-dessus de Z, dans laquelle Ty : Ag(X/Z) --» Z est une fibration
dont les fibres lisses sont des tores, et telles que la restriction

qn,. - AIb(X/Z). - Ap(X/Z).

de qu au-dessus de z est le quotient du tore Alb(X/Z), sur le tore
Ap(X/Z), dont le groupe fondamental est H, quotient de w1 (Alb(X/Z).).

Démonstration : La donnée de H détermine a translation prés un
unique sous-tore B, de Alb(X/Z),, variant holomorphiquement avec
z € Z général. La projection sur son espace de parameétres du graphe
de la famille universelle (dans 'espace des cycles de Chow-Barlet de
Alb(X)) de sous-tores relatifs de Alb(X/Z) sur Z est 'application g,
'espace de parameétres étant Ay (X/Z). O

Comme conséquence immédiate du lemme 2.10, nous obtenons 1’énoncé
suivant.

Lemme 2.12.
Soit p : m(X) — ' un quotient (avec X kdhlérienne compacte et
conneze). Soit H < T un sous-groupe abélien normal et 0 == sop :

m(X) — I'/H le quotient correspondant. Nous avons un diagramme
commutatif :

X Go(X) =Y

G,(X): =7

ol gp = St(Qngom o Odj;(/Z) et ou qHgeom Alb(X/Z) — Angom(X/Z)
étant le quotient naturel associé au groupe H9°™ par le lemme 2.11.

2.5. Morphisme de Shafarevich. Si )A(; est holomorphiquement convexe,
il admet une réduction de Remmert : r : )/(vp — R (Xj,), c’est a
dire une application I'-équivariante propre sur un espace (normal) de
Stein. Le morphisme quotient g, : X — (R ()7,,) /T") est alors une

[-réduction possédant la propriété suivante :

Définition 2.13.
Un modeéle g, : X — Y, Y pouvant étre un espace complexe normal,
de la I'-réduction sera appelé morphisme de Shafarevich associé a p si :

(i) g, est holomorphe,



REPRESENTATIONS LINEAIRES DES GROUPES KAHLERIENS 9

(i1) pour toute application holomorphe f : Z — X (avec Z espace
complexe compact connexe), g, o f est un point si et seulement si
Uimage de m(Z) par po f. est finie.

On notera cet unique modéle : sh, : X — Sh,(X) lorsqu’il existe.

Remarque 2.14. L’existence d’'un morphisme de Shafarevich est un
propriété strictement plus faible que la convexité holomorphe de X, :
il suffit qu’existe une fibration holomorphe propre X, — R(X,) telle

que R(X,) ne contienne pas de sous-espace analytique compact de di-
mension strictement positive (sans étre pour autant Stein).

Exemple 2.15. Lorsque I est abélien, il existe toujours un morphisme
de Shafarevich : celui donné dans I'exemple 2.6. Par contre, X, n’est
pas toujours holomorphiquement convexe dans ce cas (il existe des
quotients sans fonction holomorphe non constante de C*,n > 2 par
des réseaux partiels, dits « groupes de Cousin »).

Exemple 2.16. Lorsque I' est abélien géométrique, alors )f(vp est holo-
morphiquement convexe.

3. REDUCTION AU CAS PROJECTIF DE L’ETUDE DES
REPRESENTATIONS LINEAIRES SEMI-SIMPLES DES GROUPES
KAHLERIENS

Cette section donne une preuve alternative d’'un théoréme fonda-
mental de factorisation dit & Zuo [Zuo96] (théoréme 3.9) et en dérive
quelques conséquences connues mais non documentées dans la littéra-
ture comme le théoréme d’ubiquité de Simpson dans le cas kdhlérien.
Notre démonstration du théoréme necessite plusieurs étapes.

1. Cas d’une représentation p associée a une variation de structures de
Hodge complexes, lorsque la monodromie est discréte. Alors Sh,(X)
est de type général.

2. Cas d’une représentation semi-simple. Nous utiliserons ici ’énoncé
d’interversion des fibrations du théoréme 3.1.

3. Cas d’une représentation réductive.

3.1. Interversion des fibrations. Nous montrons ici un résultat qui
peut étre vu comme un phénomeéne d’échange des roles fibre /base dans
une fibration et susceptible d’applications autres que celle donnée dans
le présent article.

Théoréme 3.1.
Soit X une variété kihlérienne compacte et f : X — K une appli-
cation holomorphe dans une variété de Kummer dont les composantes
connexes des fibres lisses sont de type général.

1l existe alors une application holomorphe génériquement finie r :
X' — X, une application biméromorphe X' --» X" et g : X" — Y
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un fibré principal holomorphe de groupe structurel un tore complexe, Y
étant une variété algébrique de type général.

Par variété de Kummer, on entend un quotient d'un tore complexe
compact par un groupe fini d’automorphismes.

Remarque 3.2. Comme on pourra l'observer dans la démonstration
ci-dessous, la fibration X' — Y n’est autre que la fibration d’litaka-
Moishezon de X'. Il est bien connu que la base de la fibration corres-
pondante pour X n’est pas toujours de type général. En effet, il suffit
de considérer X = C' x E/{(o,7) ou C est une courbe hyperelliptique
(de genre g > 2), o I'involution correspondante et E une courbe ellip-
tique munie d’un point 7 d’ordre 2. La deuxiéme projection donne (en
passant au quotient) une fibration sur une courbe elliptique (en courbe
hyperbolique) :
X — E/(1)

alors que la premiére projection fournit la fibration d’litaka-Moishezon :
X — C/{o) ~ P,

Le cas ou X est projective est sans intérét et résulte de I'existence
d’un revétement ramifié de X qui est de type général. Il est standard
[Uen75| que, dans le théoréme 3.2, X et X' ont la méme dimension
algébrique a(X) et, quitte a faire un revétement fini supplémentaire,
on peut encore assurer que dim(Y) = a(X) et que g est la réduction
algébrique de X'.

On aimerait, sous des hypothéses supplémentaires sur f, pouvoir
conclure que r peut étre pris étale. Nous n’avons pas trouvé de formu-
lation raisonnable et n’obtiendrons cette précision que dans les cas trés
particuliers oti ce théoréme sera appliqué.

Démonstration du théoréme 3.1: Comme K est une variété de
Kummer, nous pouvons d’ores et déja opérer un changement de base
(génériquement fini) pour nous ramener a une application f: X — T
ou T est un tore et ou les composantes connexes des fibres générales
sont de type général. L’image de X dans T est une sous-variété irré-
ductible Z := f(X) de dimension de Kodaira x(Z) > 0. L’additivité
des dimensions de Kodaira pour les fibres de type général ([Kol87| dans
le cas projectif, [Nak99, Th. 5.7] dans le cas K&hlérien) montre alors
que :
K(X) > k(Xy) + k(Z) =dim(Xy) + k(Z) >0

ou X, désigne la fibre générale de f (supposée de dimension strictement
positive). Cela signifie que la fibration d’litaka-Moishezon de X est non
constante; notons la J : X — Y. Si X, désigne la fibrede Jeny € YV
général, elle vérifie £(X,) = 0 et son image dans T est un translaté d’un
sous-tore A, de T'. En effet, X, étant spéciale [Cam1lal, son image dans
T Test également et le théoréme d’Uneo [Uen75, Th. 10.9] montre que
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les seules sous-variétés spéciales d’un tore sont les translatés de sous-
tores. Par rigidité des sous-tores, le sous-tore A, est indépendant de y
et on note désormais A = A,. Il est clair que Z est invariant par I’action
de A par translation sur 7. Considérons alors py : T — B := T/A
le quotient de T par A et W C B I'image de X par p4 o f. Les fibres
de J étant envoyées sur des points par p4 o f, il existe une application
Y — W rendant le diagramme suivant

x-1.yz

g| 2

Y —W

commutatif et nous pouvons donc examiner I'application p : X —
Y xw Z (qui est surjective par définition de A). Nous allons montrer que
1 est génériquement finie. Cela revient & montrer que f est générique-
ment finie en restriction a f,, : X, — A, := f(X,) ; supposons que cela
ne soit pas le cas et considérons f, := St(f,) : X, — A, := St(X,/A,)
la factorisation de Stein de f,. Comme y est général, les fibres (lisses)
de fy sont des sous-variétés générales des fibres (générales) de f : elles
sont donc elles aussi de type général. Nous pouvons & nouveau appli-
quer 'additivité :

0 =r(Xy) = K(Fy) + k(4y) = dim(F,)

(o1 Fy désigne la fibre générale de fy) Nous obtenons la contradiction
souhaitée si f, n’est pas génériquement finie. En particulier, X, est
biméromorphe a fiy qui est un revétement étale fini de A, par [Kaw81,
Theorem 22, p269| (voir aussi [Cam04, Prop. 5.3|).

Le sous-groupe 7(A,) est donc d’indice fini dans 7;(A), lui méme
contenu dans 71 (7") avec m; (B) pour quotient. Puisque ces trois groupes
sont abéliens libres de type fini on a méme un isomorphisme 7 (B) ~
m1(A) x m(T). 1l existe donc un sous-groupe d’indice fini IV < (7))
dont Vintersection avec m; (A) coincide avec 71 (4,) et vérifiant ' /7 (A)
m1(B). Considérons le revétement 7 : 7" — T' correspondant au sous-
groupe [V et p: X’ — X le revétement étale obtenu par changement

de base. La factorisation de Stein de la composée X' -~ X Ly
permet de compléter le diagramme :

x Lz
J’l lWOPA
Y —W

Dans cette nouvelle configuration, 'application u' : X' — Y/ xy 2’
est maintenant biméromorphe et la fibration J' : X’ — Y’ est ainsi
obtenue comme image réciproque de la fibration en tore Z’ — W (de
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fibre fl) par le changement de base Y’ — W. En particulier, le fibré
canonique relatif Ky /y est trivial et cela implique

dim(Y') =dim(Y) = k(X) = k(X') = v (X', (J)*Ky/) = k(Y"),
c’est a dire que Y’ est bien de type général. [

3.2. Variétés des caractéres et correspondance de Simpson.
Rappelons quelques faits de base sur ’espace de modules des repré-
sentations linéaires d’'un groupe de type fini. Si I" désigne un groupe
de type fini et G un groupe algébrique linéaire défine sur Q, on notera
Rp(T', G) le schéma affine représentant le foncteur S — Hom(I', G(5)).
Le schéma des caractéres Mp(I', G) est défini comme le quotient GIT
Rp(I',G)//G (G agissant par conjugaison); il s’agit donc d’un schéma
affine dont les points sur un corps algébriquement clos de caractéris-
tique nulle k sont représentés par les classes de conjugaison des repré-
sentations réductives (voir, par exemple, [LubMag85|). Tout point de
M3 (T, G)(k) sera systématiquement représenté par une telle classe de
conjugaison.
SiT' = m (X, x), nous utiliserons la notation transparente Mg (X, G) :=

Mp (T, G) (le changement de point base s’effectuant via un automor-
phisme intérieur, il ne joue aucun role dans la définition de Mp).

Remarque 3.3. Soit G et G’ des groupes réductifs, X et Y des variétés
kédhlériennes compactes. Toute application méromorphe f : X --+ Y
induit un morphisme entre les schémas de caractéres f* : Mp(Y,G) —
Mp(X,G). De méme, tout morphisme i : G — G’ induit un mor-
phisme i, : Mp(X,G) — Mp(X,G").

Pour terminer, nous revenons sur la correspondance de Simpson et
précisons les résultats disponibles dans la catégorie kihlérienne. Cette
correspondance établit une équivalence de catégories entre les représen-
tations réductives du groupe fondamental et les fibrés de Higgs poly-
stables a classes de Chern nulles (voir [Sim92, Sim94b| pour les notions
utilisées).

Théoréme 3.4.
Soit (X, w) une variété kihlérienne compacte et (E,0) un fibré de Higgs
polystable vérifiant

/x c(B) Aw'" = /X co(B) Aw" 2 = 0.

Le fibré E provient alors d’une représentation réductive du groupe fon-
damental de X .

Un des grands succes de la théorie de C. Simpson réside en la construc-
tion pour X projective d'un espace de modules Mp, (X, G) de classes
d’isomorphisme de G-fibrés de Higgs polystables (avec ¢; = ¢; = 0)
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[Sim94a, Sim94b]. Or, cet espace porte une action naturelle’ de C*; si
[(E,0)] € Mpa(X,G) et t € C*, on pose :

t-1(E,0)] = [(E,10)].

De plus, la correspondance de Simpson s’incarne en un homéomor-
phisme des espaces topologiques sous-jacents :

MDOZ(X7 G) ((C) — MB(X7 G)(C)

Si X est seulement supposée kdhlérienne, I'espace Mp,(X,G) n’a
pas d’existence a priori mais l'action de C* persiste ? sur Mp(X,G) :
si[p] € Mp(X,G) et (E,0) est le fibré provenant de p, nous noterons
[p:] 1a (classe d’isomorphisme de la) représentation associée a (E,t6).
Nous appellerons ([p¢])iec+ la famille des déformations de Simpson de
o).

Si X est projective, I'action de C* sur la variété quasi-projective
Mpe (X, G) est algébrique et la limite

lim|(2, 10)

existe dans Mpy(X,G). La classe d’isomorphisme correspondante est
alors un point fixe de ’action de C* : il s’agit de la classe de conjugai-
son d’une représentation sous-jacente a une variation de structures de
Hodge polarisables (nous utiliserons 1’acronyme C-VSH dans la suite en
dépit de son inélégance) [Sim92|. Ce phénomeéne est connu sous le nom
d’ubiquité des variations de structures de Hodge : toute représentation
du groupe fondamental de X peut étre déformée en une C-vsH. En
effet toute représentation linéaire sur C se déforme a sa semisimplifiée
qui est réductive.

3.3. Factorisation : cas d’une C-vsH discréte. Nous abordons
maintenant le probléme de factorisation des représentations linéaires
des groupes kéhlériens. Comme annoncé ci-dessus, la premiére étape
consiste a4 examiner le cas particulier d’'une C-vSH discréte. Soit donc
(V,F*,S) une C-VSH polarisée sur une variété kihlérienne compacte
X ; nous noterons p : m (X, z) — U(V,, ;) la représentation de mo-
nodromie associée au choix d’un point base x € X.

Proposition 3.5.

Dans la situation décrite ci-dessus, supposons de plus que la repre-
sentation de monodromie est discréte. Le morphisme de Shafarevich
X — Sh,(X) associé a p existe et Sh,(X) est de type général a
revétement étale fini pres. Plus précisément, sie: X — X est un re-

vétement étale fini tel que p(mi (X)) soit sans torsion, alors Shes(,)(X)
est de type général.

1Ce phénomene a été découvert par [Hit87] en dimension 1.
2Prendre garde au fait que cette action n’est pas algébrique en général.
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Démonstration : Remarquons tout d’abord que nous pouvons sup-
poser que l'image de m;(X) par p est sans torsion. Considérons alors
I'application de période de (V,F*,S). Il s’agit d’une application holo-
morphe p-équivariante :

X —D=U(V,>5S,)/V

avec V =[], U(VE~%). L’hypothese sur le caractére discret de p montre
que cette application descend en un morphisme X — D/p(m(X))
dont la factorisation de Stein n’est autre que le morphisme de Shafa-
revich relativement & p :

sh, : X — Sh,(X),

Sh,(X) étant alors une variété projective normale (consulter [Eys04, p.
524-525]) que nous désignerons par Y pour ne pas alourdir les notations.

La C-vsH (V, F*,S) descend® sur Y en une C-VSH notée (Vy, F*,S).
Sim:Y* — Y est une désingularisation de Y, 7%(Vy, F*,S) est une
C-vsH dont 'application de période p est génériquement immersive. Le
fibré équivariant Tp descend également sur Y* en un fibré E, la diffé-
rentielle de I'application de période devenant un morphisme de fibrés
ps : Ty« — E. Remarquons que, quitte a remplacer Y* par un autre
modéle birationnel, nous pouvons supposer que l'image de Ty« — FE
est contenu dans un sous-fibré F' de F et que p, est génériquement un
isomorphisme (au dessus d’un ouvert U).

Cependant, la métrique de Hodge induit une métrique h sur le fibré
F et les formules de Griffiths et Schmid pour la courbure de D montrent
que les courbures bissectionnelles holomorphes sont semi-négatives en
restriction & p. Ty~ [Eys04, Corollaire 9.2.2]. La courbure décroissant
dans les sous-fibrés, nous en déduisons que (F,h) est semi-négatif au
sens de Griffiths ; en particulier Tr(i©,(F)) < 0. D’autre part, la cour-
bure sectionnelle holomorphe étant négative dans les directions hori-
zontales, pour tout y € U et o € Ty, (o # 0), le vecteur v = p.(«)
satisfait i©,5,5 < 0 et donc Tr(i©(F)), < 0.

En particulier, le fibré en droites det(F™) est big (et nef). Or, par
construction, le fibré canonique de Y* se décompose en Ky« = det(F*)+
D ou D est un diviseur de Cartier effectif; il s’ensuit que Y™ est bien
de type général. [J

Remarque 3.6. On pourra consulter également [BKT12| ou des ar-
guments similaires sont utilisés pour la construction de différentielles
symétriques holomorphes non triviales.

3par C-vSsH sur une variété normale, nous entendons un systéme local polarisé
muni d’une filtration holomorphe vérifiant la décomposition de Hodge et la trans-
versalité de Griffiths sur le lieu lisse.
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3.4. Cas semi-simple. Dans le cas des représentations linéaires ré-
ductives définies sur un corps local, Katzarkov et Zuo ont développé de
fagon indépendante [Kat97b, Zuo96, Zuo99| une notion de revétement
spectral en utilisant la théorie des applications harmoniques & valeurs
dans les immeubles de Bruhat-Tits [GS92]. L’exploitation de ces idées
est poussée plus avant dans [Eys04], voir également [Eys11]|. Nous résu-
mons les résultats de [Eys11, Prop. 3.4.15, Lem. 4.2.3] dont nous ferons
usage sous la forme suivante.

Lemme 3.7.
Soit X wune variété kdahlérienne compacte, L un corps de nombres et
© un idéal premier de l'anneau des entiers de L. Si p : m(X) —
GLn(Ly,) désigne une représentation réductive, il existe une fibration
holomorphe

s, X — S,(X)
vérifiant les propriétés suivantes :
(1) S,(X) est une espace kihlérien normal (projectif si X lest),

(2) si Z C X désigne un sous-espace connexe de X, s,(Z) est un
point si et seulement si p(m(Z)) est contenu dans un sous-groupe
compact de GLy(L,).

Si T désigne une variété algébrique irréductible définie sur Q et si
r T --» Mp(X,GLy) est une application rationnelle (définie elle
aussi sur Q), considérons pr : m(X) — GLx(Q(T)) une représenta-
tion réductive définie sur le corps des fractions de T dont la classe de
conjugaison corresponde au point générique de limage de r. Il existe
alors une fibration holomorphe

ST : X — ST(X)
qui satisfait de plus :
(1) St(X) est une espace kihlérien normal (projectif si X Uest),

(i1) si Z C X désigne un sous-espace connexe de X, sp(Z) est un
point si et seulement si lapplication T --+ Mp(Z,GLy) est constante.

Remarque 3.8. I est a noter que les constructions effectuées dans
|[Eys04| montrent que les fibrations s, et sy sont obtenues comme fac-
torisation de Stein d’une application vers une variété de Kummer.

Nous pouvons maintenant finir notre preuve alternative du résultat
de factorisation de Zuo [Zuo96].

Théoréme 3.9.

Soit X une variété kihlérienne compacte et p : m(X) — S une re-
présentation Zariski dense dans un groupe semi simple connezxe S (dé-
fini sur un corps algébriquement clos de caractéristique nulle). I existe
m: X' — X composition d’une modification propre et d’un revéte-
ment étale fini, f : X' — Y une fibration sur une variété projective
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algébrique et py : m(Y) — S une représentation (Zariski dense) telle
que T p = f*py.

Ceci implique que la base de la I'-réduction de X est algébrique.

[Zu096] affirme de plus que Y est de type général, ce que nous obtien-
drons plus loin.
Démonstration : Nous supposerons S défini sur un corps de nombres
L. Il n’est pas restrictif de supposer que I'image de 7, (X) par p est sans
torsion. Si g, : X — Y désigne la I'-réduction associée a p, la repré-
sentation p factorise par m1(Y) d’aprés le lemme 2.7. Considérons alors
H le sous-groupe de 1 (Y) normalement engendré par les images des
morphismes m1(Z) — m1(Y") induits par les applications holomorphes
(avec Z lisse et connexe) vérifiant p(m(Z)) = 1. Par construction, la
représentation p factorise par m(Y')/H, c’est a dire :

p€Q:=TIm(Mp(m(Y)/H,S) — Mg(Y,S)).

Notons au passage que @ est définie sur Q et que les déformations de
Simpson ([p¢])tec+ des éléments de ) sont également des éléments de

Nous souhaitons factoriser toute la non rigidité de la représentation
p. Pour cela, considérons tous les points o, € () sur un corps local de la
forme L, ainsi que les différentes composantes irréductibles 71, ..., T,
de @ qui passe par [p|. Le lemme 3.7 fournit des applications holo-
morphes s, s, et nous noterons f : Y — B la factorisation de Stein
simultanée de toutes ces applications (un nombre fini d’entre elles suf-
fit bien str a décrire f). Si i : ' — Y désigne la fibre générale de
f, la classe de conjugaison de la restriction de o & 7 (F') est indépen-
dante de [o] € @ (avec o réductive). En particulier, la restriction de
p & m(F) est conjuguée a une représentation définie sur un corps de
nombres L' O L ; ses déformations de Simpson étant constantes, pp est
sous-jacente a une C-vSH. Enfin, pour tout place non archimédienne ¢
de L', p, : m(F) — S(L},) a une image précompacte, ce qui signifie
exactement que la monodromie de pp est discréte.

Nous pouvons ainsi appliquer le lemme 3.5 : pr a un morphisme
de Shafarevich ' — Sh,,.(F') dont la base est de type général. Par
définition, la fibre générale de F' — Sh,,.(F') a une image triviale par
p; mais Y étant elle-méme déja la base de la I'-réduction attachée a
p, cela signifie exactement que la fibre générale de ' — Sh, . (F') est
un point et donc que F' est de type général. L’application f est donc
une fibration obtenue comme factorisation de Stein d’une application
vers une variété de Kummer et sa fibre générale est de type général. Le
théoréme 3.1 montre alors qu’il existe une application génériquement
finie r : Y/ — Y et une fibration en tores g : Y’ — Z sur une variété
de type général Z.

L’image de r, : m(Y') — m(Y) étant d’indice fini, la représenta-
tion 7*p : m (Y') — S est encore Zariski dense, puisque S est connexe.
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D’autre part, pour z € Z général, la fibre Y/ = g=!(z) est un tore et
la cloture de Zariski de r*p(m(Y))) est donc un sous-groupe abélien
(puisque 71 (Y,) lest) et normal de S (puisque Im (7 (Y)) — m(Y))
'est). Le groupe S étant supposé semisimple, 7*p(m1(Y/)) est donc un
groupe fini. La variété Z étant la base d'une ['-réduction associée a p,
nous en déduisons a nouveau que la fibre générale de g est un point et
que Y’ est de type général. (I

3.5. Cas général. Les résultats précédents s’étendent naturellement
aux représentations réductives des groupes kihlériens. Nous allons consta-
ter qu’elles sont construites a partir des variétés projectives et des tores
complexes.

Soit donc X une variété kéhlérienne compacte et p : m(X) —
GLy (k) une représentation réductive définie sur un corps algébrique-
ment clos de caractéristique zéro. L’adhérence de Zariski de p(m (X))
est donc un groupe algébrique réductif dont la composante neutre est
un sous-groupe d’indice fini. Le lemme suivant résulte donc de la des-

cription de la structure de ces groupes.

Lemme 3.10.

Il existe un revétement étale fini p; : X' — X tel que 'adhérence
de Zariski de G := p(m(X')) soit un groupe réductif connexe. Par
conséquent, il existe une isogénie canonique

i:G— G"=G/[G,G) x G/Z(G) ~ (GL)* x S
ou S est semi-simple et connexe.

Combiné avec les résultats de la partie précédente, ce lemme fournit la
description suivante.

Théoréme 3.11.

Dans la situation décrite ci-dessus, il existe une modification d’un re-
vétement étale fini @ X* — X, une isogénie i : G — G* comme
en 3.10, une fibration s : X* — Y sur une variété algébrique et une
représentation réductive

P m (AIb(XH) x V) — G*

tels que i o p*p = (ax: X 8)*p* (ot axs : X*¥ — Alb(X*) désigne
Uapplication d’Albanese de X*).
Nous pouvons de plus tmposer la condition

pF (m(ADb(XF)) x {1}) N pf ({1} x m(Y)) = {1}

Démonstration : Comme la partie abélienne de la représentation fac-
torise nécessairement par ’application d’Albanese, il ne nous reste qu’a
traiter la partie semisimple. Pour cela, appliquons le lemme 3.10 et
considérons pg : m(X') — S la représentation obtenue en composant
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p avec ¢ puis en projetant sur S. Le théoréme 3.9 fournit une fibra-
tion méromorphe X” --s Y, sur un revétement étale de X’ avec Y
algébrique. Si X* — Y désigne un modéle lisse de la factorisation de
Stein de X” --» Y, (Y est donc bien une variété algébrique lisse), la
représentation 7 (X*) — S factorise par Y (si on suppose que I'image
de 7 (X*) — S est sans torsion, ce que nous ferons bien entendu) et
cette fibration est bien celle recherchée. [

3.6. Ubiquité des variations de structure de Hodge. Comme
rappelé dans la partie 3.2, une des conséquences de la théorie de C.
Simpson est le phénomeéne d’ubiquité des variations de structures de
Hodge. V. Koziarz a ainsi fait remarquer aux auteurs que la démons-
tration de Simpson ne se transpose pas au cas kdhlérien. En effet, les
arguments de [Sim92| reposent sur I'existence de Mpy (X, GLy) comme
variété quasi-projective (si X est algébrique), cet espace de module
étant construit par les techniques de la Théorie Géométrique des In-
variants. Les arguments développés ci-dessus permettent cependant de
ramener le cas kiahlérien au cas projectif.

Proposition 3.12.
Soit [p] € Mp(X,GLx)(C) la classe de conjugaison d’une représenta-
tion réductive et soit (€,0) le fibré de Higgs polystable associé. Pour
t € C*, le fibré de Higgs polystable (E,t0) est associé a une (classe
de conjugaison de) représentation réductive [py] € Mp(X,GLy)(C). La
limite

lim[p] = [po]
eziste dans Mp(X,GLy)(C) et est sous-jacente a une C-VSH.
Nous aurons besoin du lemme suivant.

Lemme 3.13.
Soit I' un groupe de type fini et 'y < T' un sous-groupe d’indice fini de
I'. L’application de restriction

Res : MB(F, GLN((C)) — MB(FQ,GLN<(C))
est propre (donc fini).

Démonstration : Si I' = m;(X) ou X est une variété kihlérienne com-
pacte, il s’agit d’une conséquence immédiate de [Sim92, Lemma 2.8].
Nous omettons I'argument dans le cas général puisque nous ne 1'utili-
serons pas. [

Démonstration du théoréme 3.12: Considérons tout d’abord I’ap-
plication i : X* — X et l'isogénie i fournies par le théoréme 3.11;
u se décompose en une modification propre b : X* — X’ et un re-
vétement étale fini p : X’ — X. De plus, X* est l'espace total d’une
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fibration sur une variété algébrique lisse Y et la représentation p vérifie
iou*p = (axs X 8)*p* ot p* est une représentation de 71 (Alb(X*) x Y)
dans G*. En particulier pf = pﬁb.pg/ ou pib = pzlb(Xﬁ)p”m(Alb(Xn) et

pg/ = P} ¥l (v, ces deux représentations étant vues comme a valeurs
dans deux sous groupes algébriques réductifs notés respectivement G
et G qui de plus commutent entre eux. On a [p] = [pib,t.pg,’t] ou pib,t

(resp. p%) est un représentant de [pib’t] (resp. de [pg/t]) a valeurs dans
G (resp. dans G3). Comme Y est projective lisse, nous concluons de
la continuité de pj et du théoréeme d’ubiquité pour Y que la limite
quand t — 0 de [p%] existe. L’énoncé est élémentaire pour les repré-

sentations abéliennes et donc pour [pib ,|. Par suite la limite quand

t— 0 de [pg] existe. Par image réciproque, la limite des déformations
de Simpson de la représentation i o u*p (et donc u*p elle aussi?) existe
quand t — 0. Comme p*p = b*p*p et comme b, est un isomorphisme
entre les groupes fondamentaux, la conclusion reste valable pour p*p.
Nous pouvons finalement appliquer le lemme 3.13 pour constater que
la limite lim;_o[p;] existe. Il est alors immédiat de vérifier que la classe
d’isomorphisme du fibré de Higgs correspondant est fixée par ’action
de C* et les arguments de [Sim92, section 4] montrent qu’'un tel fibré
correspond & une C-vsH. [J

3.7. Morphisme de Shafarevich. Le théoréme 3.11 et I'existence du
morphisme de Shafarevich démontrée dans [Eys04| dans le cas projectif
impliquent :

Proposition 3.14.

Soit X une variété kahlérienne compacte et p : m(X) — T' = p(m (X)) <
GLyN(C) une représentation linéaire. SiT" < GLx(C) est d’adhérence de
Zariski réductive, alors le morphisme de Shafarevich associé a p existe.

Démonstration : L’existence du morphisme de Shafarevich est in-
variante par revétement étale fini et modification biméromorphe. Par
suite, on peut supposer que ’adhérence de Zariski de I' est connexe
et, en appliquant le théoréme 3.11, on se réduit au cas ou X = X
On dispose alors d’une variété algébrique lisse Y et d’une fibration ho-
lomorphe s : X — Y telle que la représentation p factorise comme
(ax x s)*pf ot p* : m(Alb(X) x Y) — T est une représentation. On
note py la restriction de p* a 7(Y). Le morphisme de Shafarevich
shyy Y — Sh,, (V) associé & py existe par [Eys04]. On note p™ la
restriction de pf & 7 (Alb(X)) et Shas pov + X — Shys par(X) le mor-
phisme de Shafarevich correspondant dont la construction est donnée
a 'exemple 2.6. On vérifie alors aisément que le morphisme de Shafa-
revich X — Sh,(X) est la factorisation de Stein de sh X (sh,, o s).

dcomme i est une isogénie, le morphisme MB(f(7 G) — MB()?7 G*) est fini.
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g

4. QUOTIENTS RESOLUBLES LINEAIRES DES GROUPES KAHLERIENS

Nous étudions maintenant le cas d’'un quotient linéaire résoluble
m1(X) — T et établissons dans ce cas particulier les résultats énoncés
dans l'introduction. Les outils de base sont la théorie de Hodge, 1’ap-

plication d’Albanese et la structure de Hodge mixte sur la complétion
nilpotente de 7 (X), due & R. Hain [Hai85, Hai87]|.

4.1. Morphisme d’Albanese.

Proposition 4.1.
Supposons I résoluble (non nécessairement linéaire). Alors :

(1) Si T n’est pas virtuellement nilpotent, il existe (a revétement étale
fini prés) une application holomorphe surjective f : X — C sur
une courbe projective de genre g > 2 qui factorise p.

(2) Si T n’est pas virtuellement abélien, il existe une application holo-
morphe f: X — Y, ou Y est une sous-variété de type général de
dimension strictement positive d’une variété abélienne (quotient de

Alb(X)).

Démonstration : L’assertion 1 est établie (a 'aide de 'invariant de
Bieri-Neumann-Strebel) par T. Delzant dans [Dell0]. Le cas ou I" est
linéaire avait été traité (sans cet invariant) dans [CamO1], basé sur les
travaux classiques de Green-Lazarsfeld, Beauville, Simpson, Arapura-
Nori. L’assertion 2 (qui traite donc le cas ou I' est virtuellement nil-
potent) résulte de [Cam95|. OJ

Corollaire 4.2.

S7il n’existe pas de revétement étale fini de X admettant une application
méromorphe surjective sur une variété de type général non-triviale, les
quotients résolubles de m (X) sont tous virtuellement abéliens.

Remarque 4.3. 1. L’hypothése du corollaire équivaut a : l’applica-
tion d’Albanese de tout revétement étale fini de X est surjective
et connexe.

2. Une variété spéciale au sens de [Cam04|) satisfait cette hypothése.
4.2. Morphisme de Shafarevich.

Théoréme 4.4.

Soit p: m(X) — R un quotient résoluble linéaire. Alors le morphisme
de Shafarevich sh, : X — Sh,(X) existe. Sur un revétement étale
fini adéquat de X, il coincide avec la factorisation de Stein de [’ap-
plication composée qoax : X — A,, ot ax : X — Alb(X) est le
morphisme d’Albanese, et q : Alb(X) — Ax est le quotient par le plus
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grand des sous-tores compezes T de Alb(X) tels que m(T) C K =
Ker(Hy(X,Z) — R®).

Remarque 4.5. La démonstration qui suit ne permet pas d’aborder le
cas résoluble non linéaire.

Démonstration : Sans perte de généralité, nous pouvons supposer I'
et [ sans torsion. Considérons en effet la factorisation de Stein g, :
X — Y, du morphisme goax : X — A,. Soit f : Z — X holomorphe,
Z compact connexe possiblement singulier et méme non irréductible.
Si po f.(m(Z)) est fini, alors il en est de méme de p® o f,(m,(Z)), et
9,0 f(Z) est bien un point, puisque g, est le morphisme de Shafarevich
de p®. Si g, o f(Z) est un point, alors p®(f.(m1(Z))) est fini donc tri-
vial. En particulier, p(f.(m(Z))) < N, si N := DI' < T est le groupe
dérivé de I', qui est nilpotent. Du lemme 4.6 ci-dessous, appliqué a la
composée : g,oax o f: Z — A,, nous déduisons que I'image de m(Z)
dans N, et donc dans I, est finie, ce qui établit que g, est le morphisme
de Shafarevich de p. OJ

Lemme 4.6.

Soit Y une variété Kdhlérienne compacte connexe et Z un espace com-
plexe compact kdhlérien connexe, possiblement non normal et non irré-
ductible. Soit f : Z — Y wune application holomorphe. St Uapplication
induite f. © Hi(Z,Q) — Hy(Y,Q) est nulle, alors, pour tout k > 0,
fo(m(2))CF Ay (Z)) est fini, en notant C*T1G le k-iéme terme de
la suite centrale descendante d’un groupe G, définie par : C*T1G =

(G, C*G],C°G = G .

Démonstration : Il s’agit de [Cam98, cor. 5.2] si Z est lisse. Le cas
ol Z est normale en découle. Le cas général, dii dans le cas projectif
a Katzarkov [Kat97a| et a S. Leroy dans le cas kéhlérien (voir [Cla08])
résulte de [EKPR12, Proposition 3.6, Remark 3.8] appliquée avec M la
représentation triviale et G = GL(1). O

4.3. Convexité holomorphe : cas linéaire résoluble géométrique.
Le cas linéaire résoluble se ramenant essentiellement au cas abélien,
nous en déduisons ’énoncé de convexité holomorphe suivant.

Corollaire 4.7.
Soit p : m(X) — R un quotient résoluble linéaire. Supposons que
p®(m1 (X)) soit un quotient abélien géométrique. Alors, le revétement

—~

X, est holomorphiquement convexe.

Démonstration : Il résulte du corollaire 4.4 que 'application holo-

— —_—

morphe naturelle R(X,) — R(X,w) est un revétement topologique.
Comme tout revétement d’un espace de Stein est de Stein, I’exemple
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2.16 permet de conclure. []

5. CONVEXITE HOLOMORPHE DES REVETEMENTS LINEAIRES DES
VARIETES KAHLERIENNES COMPACTES

Dans cette partie, nous donnons des conditions suffisantes sur p ga-
rantissant la convexité holomorphe de X,,.

5.1. Revétements réductifs des variétés kihériennes compactes.
Les résultats de [Eys04] fournissent des conditions suffisantes de convexité
holomorphe pour les revétements réductifs des variétés projectives lisses
et ce en terme de sous-ensembles constructibles absolus de Mp(X, G)
(avec G un groupe réductif sur Q). La généralisation de cette notion
au cadre kahlérien n’est a priori pas évidente : celle-ci doit étre fonc-
torielle pour les applications holomorphes entre variétés kdhlériennes
compactes et pour les morphismes entre groupes réductifs (voir re-
marque 3.3). Dans le cas abélien (G = GL;), les ensembles construc-
tibles absolus doivent correspondre a des translatés de sous-tores par
des points de torsion [Sim93, CamO01].

Avant de formuler une définition prenant en compte ces différentes
exigences, fixons quelques notations. Considérons pour cela T' un tore
complexe, Y une variété projective lisse et G/Q un groupe algébrique
réductif dont nous noterons Z = Z(G)° la composante neutre du centre.
Si pr (resp. py) désigne une représentation du groupe fondamental de
T (resp. de Y) a valeurs dans Z (resp. dans G), le produit :

pr - py(yr,vy) = pr(yr)py ()

définit bien une représentation de m (7T x Y') a valeurs dans G. Apreés
passage au quotient, nous obtenons un morphisme entre variétés des
caracteres :

MB(T, Z) X MB<Y,G) — MB(T X Y,G)
(lor]; [py]) = lpr - py] = [py] - [pv]

Pour finir, remarquons les points suivants : Mp(T,Z) s’identifie au
groupe algébrique Z24™(T) et le morphisme ci-dessus définit une action
algébrique ; d’autre part, Mp(Y, G) s’'identifie au fermé pj Mp(T XY, G)
des représentations triviales en restriction a (7).

Définition 5.1.
Soit X une variété kahlérienne compacte et G un groupe algébrique
linéaire réductif défini sur Q.

Un ensemble constructible M C My(X,G)(Q) est dit constructible
absolu si pour toute composante irréductible M de son adhérence de
Zariski, il existe un revétement étale p : X' — X, une application
méromorphe s : X' — T XY (avec T un tore compleze et Y une
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variété algébrique), un groupe algébrique réductif connexe H C G et
une isogénie i : H — H¥ tels que :
(1) p*M = j,M’' ot j : H — G est linclusion et M’ un fermé de
Zariski de Mg(X', H),
(2) i.M' = s*N ou N C Mp(T x Y, H?),
(3) N = Mg(T, Z(H*)°)- Ny ot Ny C Mg(Y, H*) est constructible
absolu dans le sens de [Sim93].

Notons que j, étant un morphisme fini, il est en particulier fermé.

Lemme 5.2.

S1 X est algébrique, un ensemble constructible absolu dans le sens de
[Sim93] est un précisément un ensemble constructible absolu dans le
sens de la définition 5.1.

Démonstration : L'implication directe est évidente en prenant pour
T un point, Y = X et p = s = idy.

Réciproquement, si X est algébrique, le tore T peut étre choisi al-
gébrique et Mp(T, Z(H*)°) - Ny est alors constructible absolu au sens
de Simpson (comme on le constate aisément). En particulier, i, M’ est
constructible absolu au sens de Simpson. Le morphisme i, étant fini
sur son image, M’ est une composante irréductible de (i,)~*(i.(M’))
et donc constructible absolu au sens de Simpson. A nouveau, p* étant
finie sur image (lemme 3.13), le méme argument montre que M est
constructible absolu au sens de [Sim93]. [J

Lemme 5.3.
Si X est une variété kihlérienne compacte, Mp(X,G) et ses compo-
santes irréductibles sont constructibles absolus.

Démonstration : Soit M une composante irréductible de Mp(X, G)
et [p] un point générique de M. La représentation p est alors conjuguée
A une représentation Zariski dense py & valeurs dans H(k) ot k est
un corps algébriquement clos de degré de transcendance fini sur Q et
H C G est un Q-sous-groupe. Nous pouvons alors appliquer le théo-
réme 3.11 & py. Prenons pour Ny la composante de Mp(Y, H*) qui
contient la restriction de piq a m(Y); de plus, quitte & considérer un
revétement étale fini de 7' (et donc un revétement étale fini de X'),
nous pouvons supposer que pg{lm(T) est a valeurs dans Z(H*)°. Les

conditions de la définition 5.1 sont alors satisfaites, en remarquant que
Mp(T, Z(H*)®) C i,Mp(T, Z(H)°). O

Le lemme suivant n’a pas été explicité dans [Eys04].

Lemme 5.4. -
Soit X une variété kihlérienne compacte et M C Mp(X, G)(Q) construc-
tible. Si [p1],. .., [pk] désignent les points génériques des composantes
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irréductibles de M, alors le sous-groupe normal Hyy <71 (X) défini par :

Hy = ﬂ Ker(p)
[pleM
vérifie
k
Hy = ﬂ Ker(p;).
i=1
Démonstration : Cet énoncé n’est pas spécifique aux groupes kih-
lériens. Plus généralement, on obtient immédiatement son analogue
pour la variété des caractéres de n’importe quel groupe de type fini I'
a valeurs dans GLy en utilisant que les fonctions {p — Tr(p(7))} er
engendrent 1’anneau des fonctions de Mp(I', GLy) et la description de
ses points sur un corps algébriquement clos de caractéristique nulle. On
se raméne immédiatement & G = GLy. [

En particulier H); apparait comme le noyau d’une représentation
linéaire réductive p = @p; a valeurs dans un corps de caractéristique
nulle de degré de transcendance fini sur Q, donc aussi d’une représen-
tation linéaire réductive sur C.

Nous pouvons maintenant conclure quant a la convexité holomorphe
du revétement obtenu en considérant toute une famille (constructible
absolu) de représentations réductives.

Théoréme 5.5. B
Soit X une variété kahlérienne compacte et M C Mp(X, G)(Q) construc-
tible absolu. Le revétement
Xy i= Hy\X®
est alors holomorphiquement convexe.

Remarque 5.6. S’il existe une représentation complexe d’adhérence de

Zariski semisimple telle que X, n’est pas holomorphiquement convexe
est a notre connaissance une question ouverte.

Démonstration : Nous remontons pas a pas le cours de la définition
5.1. Si X est projective, il s’agit de I’énoncé de [Eys04, Théoréme 3].
Si X =T xY et M =N = Mg(T, Z(H*)°) - Ny, le revétement
correspondant a M est :
X = T x Vi

et est donc holomorphiquement convexe comme produit d’un espace
affine par une variété holomorphiquement convexe. Si X = X' et si
M = s*N (notations de la définition 5.1), X}, est alors propre sur

Tu x Y, . Examinons 'effet d’une isogénie et supposons que X = X’
et M = M’. Les sous-groupes définies par M’ et i, M’ vérifient

Hyp < Hy <]7T1(X)
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et le lemme 5.4 montre que l'indice de H,; dans H; p; est alors fini
(majoré par deg(i)¥) et donc que

Y /
Xy — Xiw

est un revétement étale fini. Enfin, remarquons que

—_—

X}W—n)f(\&

est propre. Tout ceci montre bien la convexité holomorphe de )f(\]\; O

5.2. Revétements linéaires.

Théoréme 5.7.

Soit X une variété kdhlérienne compacte, G un groupe algébrique li-
néaire réductif défini sur Q et M = Mp(X,G) la variété des caractéres
associée. Considérons alors HS le sous-groupe de mi(X) défini comme
intersection des noyaux de toutes les représentations m (X) — G(A)
ot A est une C-algébre arbitraire. Le revétement galoisien de groupe
™ (X)/Hyy

5 - o\
est alors holomorphiquement convexe.

Remarque 5.8. On a i[\gMo = Ker(p{"") ou A est 'anneau des fonctions
réguliéres sur Rp(m(X),G) et p"* : 11 (X) — G(A) est la représenta-
tion tautologique.

Corollaire 5.9.

Si X est une variété kiahlérienne compacte dont le groupe fondamen-
tal est linéaire, son revétement universel X* est holomorphiquement
conveze.

Démonstration du théoréme 5.7: La preuve donnée dans le cas pro-
jectif [EKPR12] s’applique modulo I'adaptation du lemme 5.1 de cette
référence au cas kdhlérien. Cette adaptation est aisée, voir [Eys13|. O

6. STRUCTURE DES VARIETES DE SHAFAREVICH

L’objectif de cette section est de démontrer un théoréme de structure
pour la variété de Shafarevich associée a une représentation linéaire p en
combinant les énoncés similaires dans les cas particuliers antithétiques
et complémentaires ot I est (d’adhérence de Zariski) semi-simple d'une
part, résoluble d’autre part (La réduction du cas général a ces deux cas
particuliers résultant de la décomposition de Levi-Malcev).
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6.1. Variétés de Shafarevich semisimples. Nous donnons ici notre
démonstration alternative de la derniére partie du théoréme princi-
pal de [Zuo96] en montrant que la base du morphisme de Shafarevich
d’une représentation semi-simple est de type général. Pour cela, nous
allons utiliser une construction élaborée dans [Eys04, §5.3|, celle du I-
morphisme de Shafarevich. Rappelons en briévement les grandes lignes :

si M est un sous-ensemble constructible absolu de Mgp(X, G)(Q) (avec
G un groupe réductif et X projective lisse), il est possible de lui associer

sht, + X — shl,(X)

qui est obtenu comme factorisation de Stein d’un morphisme vers une
certaine variété de Kummer comme dans la preuve du théoreme 3.9.
Plus précisément, il s’agit de la réduction de Katzarkov-Zuo associée a
un produit de représentations de (X ) vers les points de G sur divers
corps locaux auquelles on peut attacher une application harmonique
équivariante hys @ Xy — A ot A un produit d’immeubles de Bruhat-
Tits. Par [Eys04, Prop 5.4.6], le feuilletage défini par le noyau de la dif-
férentielle complexifiée de hj, coincide avec celui qu’induit la fibration
sh!,. En particulier son corang® au point général est r := dim(sh},(X)).
Cet énoncé permet d’établir le lemme suivant :

Lemme 6.1. -
Soit X une variété kihlérienne compacte et M C Mp(X, G)(Q) construc-
tible absolu. Soit

—_—

Xor o= Hy\X* — Sy (X)
la réduction de Remmert de Stein, I'yy = m(X)/Hy et X — shy(X) =

—_—

'y \Sm(X) le morphisme de Shafarevich.

Si 'y est sans torsion et si les points génériques des composantes
connexes de M sont des caractéres de représentations d’adhérence de
Zariski semi simple, shy (X) est de type général.

Si k(shy (X)) = 0, ces représentations génériques sont d’image finie
et 'y est fini.

Démonstration : Nous pouvons supposer que M est irréductible, que
shys est biméromorphe (quitte a remplacer X par la base du morphisme
de Shafarevich correspondant) et que G presque simple. Le théoréme
3.9 nous réduit alors au cas ot X est projectif.

Pour montrer le résultat annoncé, il nous suffit d’établir les deux
points suivants :

5L’argument de [Zuo96| repose sur I’énoncé plus fort que cette propriété est
satisfaite par la factorisation de Katzarkov-Zuo d’une représentation Zariski dense
dans un corps local non archimédien et en derniére analyse sur [Zuo99, Theorem
4.2.3]. Une difficulté dans Pargument de [Zuo99, p. 72| a conduit [Eys04] a en
donner la présente version affaiblie et a motivé le développement de notre approche
alternative a [Zuo96].
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(I) la dimension de Kodaira de X est positive ou nulle® : x(X) > 0.

(IT) si k(X) =0, la représentation correspondant au point générique
de M est d’image finie.

Voyons tout d’abord comment ceci permet de conclure que X est de
type général. Si x(X) > 0, il nous suffit de montrer que les fibres gé-
nérales de la fibration d’litaka de X sont des points. Si F' désigne une
telle fibre, elle vérifie par définition x(F') = 0 et son image dans G est
un sous-groupe normal (car F' est la fibre générale d’une application
holomorphe). Comme G est presque simple, le deuxiéme point ci-dessus
nous assure que l'image de m;(F) dans G est finie. Comme nous avons
supposé que X = shy(X), cela implique que F' est réduit & un point
et X est bien de type général.

Pour établir les points ci-dessus, utilisons une construction de [Eys04,
Paragraphe 1.3.4]. Si [ est une forme r-linéaire alternée complexe sur
I'appartement de A, la quantité < [], ., w*B,A"0Ohy > définit un
tenseur holomorphe 7 € H°(X, SVQO% ) qui est non nul si 3 est choisie
génériquement.

Par construction 7 est induit par une forme pluricanonique holo-
morphe 7/ définie sur un ouvert U C shi,;(X). En choisissant une mul-
tisection de sh, nous voyons qu'’il existe une application holomorphe
Y 1 X' — shi;(X), X' étant projective lisse, telle que ¢*7! se pro-
longe & une forme pluricanonique réguliére sur X’. Ceci signifie préci-
sément que 7! est une forme pluricanonique sur la base orbifolde de
shi; [Cam04|, c’est-a-dire « (shi,;(X), A(shi,)) > 0. Remarquons éga-
lement que les fibres F' de shi, sont de type général (par construction
elles ont une application de périodes génériquement immersive, comme
dans la démonstration du théoréme 3.9). Le point (I) :

K(X) > k(F) + & (shi (X), A(shy,)) > 0.
résulte alors de la variante orbifolde de [Kol87] :

Lemme 6.2.

Soit f: X --»Y wune fibration rationnelle de variétés projectives com-
plezes dont la fibre générale fibre est de type général. Alors, k(X) >
dim(X,) + (Y, f) ou (Y, f) = (Y, A(f)) et f désigne un modeéle net
préparé et admissible de f (voir [Cam04, Section 1.3]).

Démonstration : Il s’agit de reprendre les arguments de [Vie83, Kol87|
en y incorporant les considérations développées dans [Cam04|. En effet,
les arguments de [Vie83, §7] montrent qu’il suffit de traiter le cas d’une
fibration dont la variation est maximale, une fois que ’on y a remplacé
le théoréme III par le résultat de semi-positivité orbifolde [Cam04, Th.

6Notons que ce point résulterait de la conjecture d’abondance.
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4.11]. Si f est a variation maximale, il nous faut alors établir I’égalité :

(1) k(Y. det fu(mKx/vay)) = dim(Y)

pour m >> 1 (toujours d’aprés les arguments de Viehweg). En fait,
dans cette situation, le faisceau f.(mKx/v.acs)) est lui méme big 7
pour m assez grand. En effet, d’aprés [Cam04, Prop. 4.15], il existe un
changement de base (avec v) fini

X' =y

!
X—Y
et une injection de faisceau

gu(mKx1pyr) = 0" f(mKx/v,a¢p) + B)

(avec B un diviseur sur X qui est f-exceptionnel et qui ne perturbe
donc pas les espaces de sections globales puisque f est supposée nette).
Or, le résultat principal de [Kol87] établit le caractére big du faisceau
g+(mKxiyyr) pour m assez grand; les faisceaux considérés étant de
méme rang, nous en déduisons que v* f.(mKx/v,a(s) + B) ainsi que
fe(mKx)v,a(y)) sont également big et que 1'égalité (1) est bien vérifiée.
OJ

Pour le point (IT), nous reprendrons essentiellement les arguments
de [Zuo96]. On suppose maintenant x(X) = 0. Le raisonnement mené
ci-dessus montre que dans ce cas shi, est une application birationnelle
et le noyau de la différentielle complexifiée de hy; : X — Ay est
trivial au point général de X.

Dans ce cas, la construction ci-dessus fournit une forme pluricano-
nique qui s’annule sur le diviseur de ramification R du revétement
spectral X3§, associé¢ & M (voir [Zuo96, Eys04|) et nous en dédui-
sons l'égalité : k(X3,) = k(X) = 0. En effet, prenant un modéle
lisse Y de X3, dont tous les diviseurs exceptionnels s’envoient sur
R et désignant par ¢ : Y — X l'application naturelle, nous avons
Ky = o*Kx + ZZ a; B + Zj b;F; ou les E; sont exceptionnels et
les I sont finis sur les composantes de R et a;,b; > 0. L’annula-
tion de la forme pluricanonique exactement sur R fournit l’existence
de a,8 € Qs tels que aR < Kx < (R (donc la dimension d'Ti-
taka [Uen75] de (R, X) est nulle). Il existe donc o/, 3" € Q¢ tels que
d/oc*R < Ky < ff/0*R. Comme la dimension d’litaka de (6*R,Y) est
égale a celle de (R, X) par [Uen75, Theorem 5.13], on conclut bien que
k(Y) =0.

D’autre part, le revétement spectral vient également avec une appli-
cation vers une variété abélienne oy @ X3, — Alby,; comme celle-ci

"nous renvoyons a [Vie83] pour les notions de faible positivité et de bigness.
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provient essentiellement de ’application pluriharmonique hj;, I’hypo-
thése sur le noyau de la différentielle de hjy; montre que aj; est géné-
riquement finie. Les résultats de [Kaw81| montrent que X3, est alors
birationnelle a une variété abélienne. Cette derniére remarque entraine
que I'image de la représentation correspondant au point générique de
M est virtuellement abélienne : elle est donc finie d’aprés [Sim93|. O

Nous retrouvons ainsi le dernier point du théoréme principal de [Zuo96].

Théoréme 6.3.
Si I' < GLy(C) est d’adhérence de Zariski semi-simple et I' sans tor-
sion, Sh,(X) est une variété de type général.

Démonstration : Si M le plus petit fermé constructible absolu de
Mp(X,T) contenant p, M est irréducible. Considérons py; un repré-
sentant de son point générique. Puisque Ker(py) < Ker(p), on a un
morphisme 7 : Shy(X) = Sh,,,(X) — Sh,(X). Soiti : Z — X la fibre
générale de X — Sh,x) de sorte que i*p est la représentation triviale
(en particulier, Z est lisse). La classe de conjugaison [1] de la représen-
tation triviale est fermée absolue dans Mg(Z,T), M C (i*)71[1] ce qui
signifie que ppr(m(Z)) = {1}. Donc Z est contractée dans Shy(X) ce
qui implique que 7 est biméromorphe. Le lemme 6.1 permet alors de
conclure. [J

Remarque 6.4. Dans ce raisonnement, on peut prendre pour Z un
revétement étale de la résolution des singularités d’une composante
d’une fibre de 7. Il en résulte que 7 _est un isomorphisme. Néanmoins,
nous ignorons s’il est possible que X, ne soit pas holomorphiquement

convexe, c’est & dire que R(X,) soit de Stein. Ce que nous obtenons est

que R(X

on) — R(X,) est un revétement topologique par un espace de
Stein.

6.2. Cas linéaire général. Nous considérons maintenant le cas géné-
ral p: m(X) — I' < GLy(C). Nous noterons G := I' I'adhérence de
Zariski de I'. Quitte a remplacer X par un revétement étale fini adé-
quat, nous supposerons que les groupes algébriques intervenant dans la
suite sont connexes et que les représentations linéaires déduites de p, de
ses quotients ou sous-représentations se factorisent par les I'-réductions
associées.

Soit donc R le radical résoluble de G et A : G — S := G/R son
quotient semi-simple. Par Levi-Malcev, GG est produit semi-direct de .S
par R. Nous désignerons par R :== TN R, et s : I' — I'/R le quotient
naturel déduit de A\. Donc R est résoluble, et 0 := sop: m(X) - T'/R
est semi-simple.

Nous avons donc (par le lemme 2.10) des réductions g, : X — G,(X)
et go + X — G,(X) associées & p et o et une factorisation g,/, :
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G,(X) — G5(X) telle que g5 = g,/0 © g, La restriction de g, a la fibre
générique X, de g, n’est autre que la R-réduction de g, . En effet (voir
lemme 2.10), la restriction, notée p,, de p & m(X,) a pour image R.

En combinant le théoréme 3.14 avec le corollaire 4.4, nous pouvons
établir le :

Théoréme 6.5.

Soit p: m(X) = ' < GLy(C) comme ci-dessus. Alors (quitte a rem-
placer X par une modification propre d’un revétement étale fini adé-
quat), la variété Sh,(X) est biméromorphe a lespace total d’une fi-
bration lisse T : Shy(X) — S,(X) en tores complexes sur une variété
algébrique S,(X) de type général.

Démonstration : Notons Sh,(X) := Z. Posons H = R/[R, R, p' :
m(X) — I'/[R, R] et appliquons le lemme 2.12. La p’-réduction sh, :
X — Sh,(X) :=Y est biméromorphe a la factorisation de Stein d'un
gooxz X — AX/Z) = A, out: AX/Z) — Z est une fibration
presque holomorphe dont les fibres générales sont des tores complexes.
Il résulte du lemme 2.10 et du théoréme 4.4 que cette p’ réduction est
la p-réduction de X.

Nous avons, pour z € Z général une application de Ueno-Kawamata
unique : u, : Y, — W, qui est un fibré principal de groupe K, un revé-
tement étale fini d'un sous-tore de A,(X /7)., avec W, de type général.
Par la compacité des composantes irréductibles de ’espace des cycles
de Chow-Barlet de Y, nous en déduisons ’existence d’une application
presque-holomorphe u : Y — W au-dessus de Z, holomorphe au-dessus
de I'ouvert de lissité de sh, : X — Z, et dont la restriction a Y, coincide
avec u, : Y, — W,, fibre de W au-dessus de z. Nous avons alors une
application d’Albanese relative naturelle : o, : Alb(Y/Z) — Alb(W/Z)
au-dessus de Z, et un morphisme injectif : aw,; : W — Alb(W/Z)
au-dessus de Z tels que ay, o ayyz = awyz o ayy; © Y — Alb(W/Z).
L’application u : Y — W est surjective et une submersion a fibres des
tores complexes au-dessus de 'ouvert U C Z de lissité de sh,,.

La variété S,(X) := W est bien de type général, puisque fibrée sur
Z = Sh, de type général, et & fibres génériques W, de type général.

Pour conclure que la fibration obtenue 7 : Sh,(X) — S,(X) est bi-
méromorphe & une fibration lisse, il suffit de remarquer que le groupe
fondamental de la fibre générale de 7 s’injecte dans celui de Sh,(X)
(ceci vient du fait que Sh,(X) est la base d’un morphisme de Shafare-
vich). Nous pouvons alors appliquer I’énoncé [Nak99, Th. 7.8| qui nous
fournit la conclusion souhaitée. [
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